
www.manaraa.com

SOFTWARE ENGINEERING OF THE RACEGEN AUTOMATIC PROGRAM

GENERATOR

A THESIS

Presented to the Department of

Computer Engineering and

Computer Science

California State University, Long Beach

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By Lawrence Cohen

B.S., 2003, California State University, Long Beach

May 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 1434631

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1434631

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

WE, THE UNDERSIGNED MEMBERS OF THE COMMITTEE,

HAVE APPROVED THIS THESIS

SOFTWARE ENGINEERING OF

THE RACEGEN AUTOMATIC

PROGRAM GENERATOR

By

Lawrence Cohen

COMMITTEE MEMBERS

i[
Frame Murgolo, Ph.^AChay)

Shui Lam, P h ^ r

Computer Engineering
and Computer Science

Dar-Biau Liu, Ph.D.

Computer Engineering
and Computer Science

Computer Engineering
and Computer Science

ACCEPTED AND APPROVED ON BEHALF OF THE UNIVERSITY

Vavne Dick,S?h.D.Wayne Dick,N?h.D.
Department Chair, Department of Computer Engineering and Computer Science

California State University, Long Beach

May 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

SOFTWARE ENGINEERING OF THE RACEGEN AUTOMATIC PROGRAM

GENERATOR

By

Lawrence Cohen

May 2006

This thesis details the Object-Oriented software engineering process used to

develop a parameter-driven automatic program generator called RaceGen. RaceGen is

based on the combination of an Application Program Interface (API) generation pattern

and a Code Attributes generation pattern.

Parameterization was accomplished through the use of a Graphical User Interface

(GUI). The GUI allows the user to customize the output of the generator by entering

selections on a series of questionnaire forms. The content of the questionnaire forms was

based on the Software Requirements Definition, which began the software engineering

process.

The following stages of the software engineering process (Software Life Cycle)

are covered in this thesis: Analysis, Design, and Implementation. Testing was not

treated as a separate step. I performed testing at every step. I did not consider the

remainder of the lifecycle, i.e., Integration, Maintenance, and Retirement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

Page

LIST OF TABLES... v

CHAPTER

1. INTRODUCTION.. 1

2. AUTOMATIC PROGRAM GENERATION...3
Background.. 3
Patterns for Automatic Program Generation.. 3
Choosing a Pattern...5
Using the Patterns in RaceGen...8

3. THE SOFTWARE LIFE CYCLE...9

Analysis... 9
Requirements Definition... 9
Functional Specification... 12
Design... 13
Implementation.. 15
Reworking the Documentation...17

4. CODING STANDARDS..18

File Standards.. 18
Method Standards..18
Naming Standards.. 19
Format Standards...20

5. WHAT WOULD I DO DIFFERENT NEXT TIME?..21

6. CONCLUSION... 22

Development M odel... 22
Why Automatic Program Generation?..22
Extension of the Software...23
Maintenance... 24

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER Page

APPENDICES..25

A. SOFTWARE DEVELOPMENT DOCUMENTATION... 26

B. PREGENERATED HEADER FILES... 76

C. POSTGENERATED HEADER FILES... 115

D. TOOLS USED.. 152

E. GLOSSARY..154

F. USER’S MANUAL..156

REFERENCES...162

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF TABLES

TABLE Page

1. Patterns for Automatic Program Generation..4

2. Patterns Which I Chose to U se...6

3. Patterns Which I Chose to not U se.. 7

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1

INTRODUCTION

This thesis describes the software engineering process used to develop RaceGen.

This thesis is not intended to explore the game development process. It is intended to

describe how an automatic program generator was developed using software engineering

techniques.

RaceGen is a parameter-driven [1] automatic program generator [2] that can

produce a wide variety of games. The only restriction on the game produced is that it be

based on a race between a number of objects. A collection of user selected settings are

used to determine the code that is generated. In the case of RaceGen, the method of

collecting this data is through the use of a series of questionnaire forms. The user selects

various options from the GUI and when finished generates the code. The code is then

compiled by the user and may be executed. For this project, I decided to write the GUI in

Visual Basic for its programming ease. I decided to have RaceGen generate C++ code,

because it is the Object-Oriented language which I am most familiar.

RaceGen was developed using the Waterfall model of software engineering in

which certain phases of development are completed and “signed o ff’ prior to the start of

the next phase [3]. This thesis covers the first three phases of the Waterfall model:

Analysis, Design, and Implementation. The first step was the Requirements Definition.

The Requirements Definition was used to determine what options would be available on

the GUI, which was used to determine what code to generate. Once the Requirements

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Definition was complete, the Functional Specification was written to fulfill the

Requirements. The design is based on the Functional Specification and was the last step

before the code was written.

The GUI was written in Visual Basic, due to the ease of writing GUI code using

the Visual Basic API. The RaceGen generator generates code in C++, using the Open

GL library for graphics. The reasons for choosing C++ were to be able to use Object

Oriented Programming and to be able to use the Open GL libraries to implement the

graphics.

The purpose of the RaceGen automatic program generator is to generate a

complete program without any programming by the user. In this way, people who know

absolutely nothing about programming will be able to generate their own custom racing

games, according to how they want it. This is in contrast to other automatic program

generators which generate a template to which additional code must be added, which

requires programming knowledge in order to produce a functional program.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2

AUTOMATIC PROGRAM GENERATION

Background

The purpose of Automatic Program Generation is to produce code by a means

which is simpler than typing it in by hand. Various methods are used to generate code.

Since RaceGen is parameter-driven, a GUI is used for the user to define what code w ill

be generated. That way, the user may customize the generated code by selecting

whatever design he or she wants for the final product.

The basis of RaceGen’s automatic program generation is that it selectively takes

pieces o f code from a Library folder and places them in a Code folder. RaceGen

modifies most o f the code in the Library folder according to the user’s questionnaire

selections prior to transfer into the Code folder. When the generation is complete, the

Code folder will contain all of the code. The user will then compile the code and it will

then be ready for execution by the player.

Patterns for Automatic Program Generation

Research has revealed seven basic patterns for program generation. Some o f

them are more suited for use by this thesis than others. This chapter is to describe each of

the patterns, identify the ones that are best suited for this project and document why the

others will not be used.

The following are the patterns [4]:

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE 1. Patterns for Automatic Program Generation

Pattern Description

TEMPLATES + FILTERING Describes the simplest way of generating code.

Code is generated by applying templates to textual

model specifications (often XML/XMI), typically

after filtering some parts of the specification. The

code to be generated is embedded in the templates.

TEMPLATES + METAMODEL An extension of the TEMPLATES + FILTERING

pattern. Instead of applying patterns directly to the

model, we first instantiate a metamodel from the

specification. The templates are then specified in

terms of the metamodel.

FRAME PROCESSING Describes a way of generating code by means o f so-

called frames. Frames can be seen as programs

(functions) that generate code as the result o f their

evaluation. Frames can be parameterized by

number and string literals as well as other frame

instances.

API-BASED GENERATORS Provides an API against which code-generating

programs are written. This API is typically based

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

on the metamodel/syntax of the target language.

INLINE CODE GENERATION Describes a technique where code generation is

done implicitly during interpretation or compilation

of a regular, hand-written program. This process

typically modifies the program that is then

subsequently compiled or interpreted.

CODE ATTRIBUTES Describes a means by which normal, handwritten

program code contains annotations, or attributes,

that specify things that are not contained in the

code. Based on these attributes, additional code can

be generated.

CODE WEAVING Is about combining, or weaving, different parts o f

program text together. These different parts

typically specify different independent aspects

which are then combined in the woven program.

Weaving is based on specifications, how the

different aspects fit together, so-called join-points.

Choosing a Pattern

In order to develop an automatic program generator, patterns were chosen among

these seven. Listed below are the patterns which I have selected for RaceGen and the

reasons why I have chosen them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE 2. Patterns Which I Chose to Use

Pattern Reason for choosing

API-BASED GENERATION It provides a way to generate a small amount of

code that needs to handle a well-defined task, in

this case a racing game. The general task of

generating the code is well-defined, while the

specifics are customized, through the use of

parameterization. In addition to API-BASED

GENERATION, CODE WEAVING may also have

been used to implement modifications to the source

code by the user.

CODE ATTRIBUTES Its purpose is to generate code, in addition to

existing code. It uses annotation in the code to

identify where the additional code must go. In this

case, the annotations are comments.

Next, I have listed the other patterns and for each pattern are the reasons why I

chose to not use them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE 3. Patterns Which I Chose to not Use

Pattern Reasons for not choosing

TEMPLATES + FILTERING It requires a powerful filtering mechanism and it is

most useful when the source specification is highly

structured and uses well-defined meta syntax.

TEMPLATES + METAMODEL It is more suited for larger, model-based systems.

FRAME PROCESSING It is too complicated for this project. At this point,

I am unfamiliar with its use and would require

more in-depth research to establish a level of

understanding necessary to include it as the best

choice.

INLINE CODE GENERATION It is more suited for generating source code that

requires operating system flexibility. To do this it

needs to have a lot of preprocessing which should

not be necessary for this project.

CODE WEAVING Used for more complex projects. It would require

detailed specifications and a meta-model not

necessary for this project.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Using the Patterns in RaceGen

RaceGen uses a combination of the API-based pattern and the Code Attributes

pattern. The API-based pattern is used to select which sections of code will be included

in the final product. For example, if the user selects the boat vehicle from the

questionnaire and then later clicks the Generate button, the Boat.h and Boat.cpp files will

be transferred from the Library folder to the Code folder. This direct transfer is possible,

because there is nothing in the boat class which is defined by the user’s questionnaire

selections. The files for boat’s parent class, Vehicle, however cannot be transferred over

as is, because the user has selected the vehicle’s top speed, damage tolerance, etc. So, the

Code Attributes pattern must first be applied to the Vehicle class’s files before applying

the API-based pattern, which is to transfer the files from the Library folder to the Code

folder, based on the user’s questionnaire selections.

The method used to employ the Code Attributes method is to place comments in

the source code where the code is determined by the user’s questionnaire selections.

When the generator encounters such a comment, it will determine the code that should be

there. For example, when the following comment is encountered:

//Declare controls

the generated code will be the following if keyboard controls are selected by the user:

//Declare controls

Keyboard kb;

Once the Code Attributes pattern has been applied to the entire section of code, it is

transferred to the Code folder.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3

THE SOFTWARE LIFE CYCLE

Analysis

The Analysis was a means to produce documentation which could be shown to

the client to show them that their needs will be met by the software to be developed. It

includes the Requirements Definition and the Functional Specification. The purpose o f

the Analysis is to determine what can be done to meet the client’s needs. Once the

Analysis was complete, it could have been shown to the client who decides if it will

satisfy their requirements. (In my case, I am the client as well as the developer). They

would probably have wanted changes to be made. Once the changes were complete, so

was the Analysis phase and then the Design was worked on.

Requirements Definition

The requirements in the Requirements Definition are determined by the client in a

real world case, but in this case, I came up with them myself. I had to play the part o f the

client, since there was not a real client for this product. First, I came up with the idea for

an Automatic Program Generator which is capable of generating a wide variety o f racing

games. That became the first requirement. Thinking as a client, I started thinking o f

what the racing game should do. This is the basis of the remaining requirements.

The wording of the requirements are such that they are non-technical (since they

are supposed to have been written by a client). Considering that the client has requested

software that requires no additional programming by the user, there is a good chance that

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

they do not know anything about programming and the Requirements reflect that type of

client.

The requirements do need to be specific and unambiguous. This is so that the
*

software engineers will understand what is to be done and minimize the amount of

communication that is required with the client. Communication with the client is

important, but discussion which is intended to clarify carelessly written Requirements

only adds to the development time and ultimately could result in either additional cost or

lower quality. So, to avoid this, much care was taken in the writing of the Requirements

so that they are clear and specific. The more detailed and specific the Requirements are,

the less the software engineers will need to establish on their own to satisfy the

Requirements. In RaceGen’s case, the Requirements are not extremely detailed. Since

there are differing levels of knowledge among clients, Requirements specifications will

vary in the amount of detail they contain. Although more customer detail is always

desirable, experienced software engineers should be able to work with the client to

develop a set of requirements that will lead to the development of the product the client

desires. This should be true even though the client can not articulate their desires on their

own.

The first step was to create Scenarios which are closely connected to the Use Case

Diagrams [5] and describe expected usages of the system. The Scenarios are intended to

describe the use of RaceGen, such that every possible situation is covered by the

Scenarios. The Scenarios are specific. They show exactly what is being selected b y the

user. For example, in the first Scenario, the actual title that the user enters is listed,

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

“Grand Prix Pro.” I listed the type of vehicle, “car”, rather than just saying that the user

selects “a vehicle.” All the scenarios follow the same format, but using different settings.

To create each scenario, I thought of the possible usages and recorded a specific

action for each step of an occurrence. The objective of the Scenarios is to record every

possible action by the actors. Due to RaceGen’s generality, this set is too large to

consider in its entirety. To minimize the number of scenarios, I made as many different

selections between scenarios as possible. Although it was necessary to list every possible

selection in the scenarios, it was not necessary to list each vehicle (i.e. car, motorcycle,

airplane, etc.) and each track (i.e. street, dirt, sky, etc.). That is because, from the

standpoint of the scenarios, there is no difference between a car and a motorcycle, or

between a street track and a dirt track.

Once the Scenarios were complete for RaceGen, I began to design Use

Case Diagrams. “Use case diagrams describe what a system does from the standpoint of

an external observer. The emphasis is on what a system does rather than how” [5]. The

first Use Case Diagram shows what the user does to generate the code using RaceGen. It

shows that the user initiates code generation which is handled by the Code Generator. It

also shows that the user compiles the generated code. 'Once the code is compiled, then it

may be used by the player. The second Use Case Diagram shows what the Code

Generator does to generate the code. Once the code is generated, it is saved and may be

accessed by the user. The third Use Case Diagram shows how the player uses the racing

game that was generated by the user using RaceGen.

Having completed the Requirements Definition, Use Case Diagrams, and

Scenarios, I created a Glossary to define application specific terms which needed to be

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

clarified, such as user, developer, and player. Then I began to write the Functional

Specification.

Functional Specification

The Functional Specification was written to show what will be done to satisfy

each Requirement. When the Requirements were written, they were numbered. In the

Functional Specification, each functional component was accompanied by a list of the

Requirements which that component satisfies. One component may satisfy more than

one requirement. In that case, all of the Requirements that are satisfied by that

component were listed.

The Requirements Definition was “tested” against the Functional Specification.

Each requirement in the Requirements Definition must appear at least once in the

Functional Specification and each component in the Functional Specification must

correspond to one or more requirements in the Requirements Definition.

Each component describes what was to be done, but not how it was going to be

done. The components include screen shots of the GUI where applicable. In that case,

there is a description of how the GUI works, what all of the buttons do, etc. Depending

on how detailed the requirements were, the software engineer must originate some ideas

of their own. This is not desirable, because it leads to opportunities (in the negative

sense) for there to be discrepancies between what the software engineer is proposing and

what the client really wants.

When the Functional Specification is complete, it is reviewed with the client. If

the components do not do what the clients want, the Functional Specification

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

documentation will need to be updated. Sometimes the reason that the components do

not do what the client wants is because the Requirements Definition was not written

correctly. In that case, the Requirements Definition would need to be updated and the

Functional Specification would also need to be updated. Once a Functional Specification

is complete and the client agrees that the components satisfy the requirements, we create

a list o f the nouns and verbs in the Functional Specification. This list eventually became

the classes, attributes and methods in the Class Diagram. I next created the Data

Dictionary, which has a definition of each noun and verb from the Nouns and Verbs list.

Finally, I created the Class Definition which was the starting point for the header files.

Design

The first step in the Design was the GUI Design. The GUI Design actually began

in the Functional Specification, because the GUI needed to be designed for the screen

shots. However, limited functionality was described in the Functional Specification,

since its only purpose was for screen shots to show the client. Validation needed to be

added for text entries. Functionality needed to be added to the buttons, especially the

Generate button, which is used to begin generation of the code.

The GUI has three forms. The first form is used to enter information, such as the

title of the game and laps per race. The second form is used to select track, vehicle,

controls, and weather conditions. The last form is to select details of how damage is

handled and also to set up the interactions between various components of the game, such

as how a vehicle interacts with speed. For example, a higher number entered here affects

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the handling of the vehicle more when it has a high speed. Also, the third form has a

Generate button which the user clicks to begin code generation.

In addition to the design of the GUI, I also created a complete list o f classes,

attributes, and methods. I started with the Nouns and Verbs list. For each entry in the

list, I marked whether it is a class, attribute, or method. Each verb is a method. Each

noun is either a class or an attribute. If a noun seemed complex, having methods and

attributes o f its own, I made it as a class. The simpler nouns I marked as attributes. This

step provided the foundation for the Class Diagrams.

The Class Diagrams show the classes and the relationships between the classes.

For example, for the Track class, the composition relationship is shown. One Track is

composed of many Obstacles and one Finish Line. Also for the Track class, inheritance

is shown. A Velodrome [6] is a Track and also a Street track is a Track. There are two

separate Class Diagrams: one for the Generator, and one for the Generated Code. Since

there is so much detail in the Class Diagrams, I listed the attributes and methods in the

Class Diagram Catalog instead of in the diagrams themselves. The Class Diagram

Catalog lists attributes and methods for each class. Without the Class Diagram Catalog,

the attributes and methods would have to have been listed on the Class Diagram and the

Class Diagram would have been too difficult to read, due to its large size.

I developed a Methods list from the Class Diagram Catalog. For each class in the

Class Diagram Catalog, I listed the class name, followed by its methods. For each

method I listed its signature, preconditions and postconditions. The signature shows the

method name, its return type, and its parameters. The signature also shows if the method

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

is const, meaning that they do not modify the object. This is important for eliminating

many bugs [7].

“Preconditions and postconditions are used to specify precisely what a function

does. However, ..., a precondition/postcondition specification does not indicate anything

about how a function accomplishes its work.” The preconditions and postconditions are

like a contract, stating that if you do this for me (precondition), I will do this for you

(postcondition). I will not say how I will satisfy the contract. That is left up to me. I f the

preconditions are not met, then the results will be unpredictable, and it will not be the

responsibility of the function to check that the preconditions are being met, [8].

Implementation

The Implementation phase was when the actual code is written. The Class

Diagram was used as a guide with the detailed list of methods in the Class Diagram

Catalog becoming the header file for each class. If care is taken in the Analysis and

Design phases to be accurate and detailed, the Implementation phase will not be difficult.

Everything should fall into place as planned.

To code RaceGen, I started with the GUI, since it was needed for screen shots for

the Functional Specification. There are two main parts of the GUI that needed to be

coded, the questionnaire forms and the code generator. At first, I coded the forms. Using

Visual Basic for this was easy. However, deciding where to put the controls was not a

simple task. In addition to being functional, the GUI needed to be visually pleasing.

There should not be too many nor too few controls on one form. I made the first form,

the Title form, simple so that the user would have an easy introduction to the system. All

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

of the forms have a combination of different settings which are not necessarily related,

but are together so there would not be too few controls on one form. Each form has a

Submit button to accept the settings and advance to the next form and a cancel button to

return to the previous form. The last form has a Generate button instead o f the Submit

button which generates the code.

The next step was to generate some simple code. The idea I used was to verify

that the automatic program generation would work to generate a simple program before

continuing with the implementation. So, I had the generator generate a window w ith the

title which was entered on the Title form. Since none of the code had been written yet,

there was nothing else to generate.

Being confident that the automatic code generator would work, I began to w rite

the code according to the design. The code would later be used by the generator to put

together a racing game, according to the user’s parameter selections. Due to the Object-

Oriented Design, I was confident that if the program worked with any one track and any

one vehicle, then it would work for any other track and any other vehicle. The generator

generates calls to methods that are defined at the abstract class level. As long as the

concrete classes implement these methods as defined by their contracts, the system

architecture will function as designed. I decided to implement the code for the street

track and car vehicles. I wrote the code for keyboard control, mouse control, damage

handling, high score lists, and weather. Although some of these (such as high score list)

may not be needed for a particular game, I still needed to have it available in the library

for use, in case it is selected to be used. Similarly, I would need to have the other tracks

and other vehicles available too.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Reworking the Documentation

One of the basic principles of applying the standard formal Software Engineering

methodology is that there will be less time spent on Implementation if more care is taken

on the Analysis and Design. For this reason, it was important to be thorough and detailed

in the Analysis phase so that less time was spent on Implementation. Once

Implementation began, however, I found that the Design was not always correct and

changes had to be made for the Implementation to work.

Whenever there had been a flaw or omission in the Design or something that was

left out, the Design documentation needed to be updated so that errors did not propagate

from a faulty design. If this were a real-life project, communication with the customer

would also be necessary before going back and making changes to the documents o f the

Analysis phase.

A feedback loop [3] was used to rework the documentation. Once a change was

made, to the Design for example, the change would be carried over to the Analysis

through the feedback loop. Through this process, all of the documentation was kept

correct and in agreement.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4

CODING STANDARDS

The Coding Standards “refer to how programming language features are used...” [9].

The following are benefits of adhering to Coding Standards [10]:

• Programmers can go into any code and figure out what is going on.

• New people can get up to speed quickly.

• People new to C++ are spared the need to develop a personal style and defend

it to the death.

• People new to C++ are spared making the same mistakes over and over again.

• People make fewer mistakes in consistent environments.

File Standards

There is exactly one header file for each class. The header file contains all

of the data and method declarations for that class. In addition to the header file,

each class has a source file which contains the definitions of all of its methods.

Method Standards

Each method is commented with the method name, preconditions and

postconditions [8]. Preconditions are what the state of the program must be prior

to calling the method. This includes, but is not limited to, initialization of

variables, other methods being called, and certain GUI functions being activated.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Postconditions may include return values, and side effects of the method being

called.

Example: void AddDamage()

//preconditions: Damage is enabled.

//postconditions: Damage is increased for the vehicle.

Naming Standards

Class names begin with a capital letter. The first letter o f each word in the

class name will be capitalized.

Example: FinishLine

File names are named as the class name, followed by .h for the header file and by

.cpp for the source file.

Example: FinishLine.h

FinishLine.cpp

Attribute names are all lower-case. Words are separated by an underscore.

Example: top_speed

Method names begin with a capital letter. The first letter of each word in the

function name is capitalized.

Example: UpdatePosition

When an attribute name is part of the method name, only the first letter of the

attribute name is capitalized.

Example: ReduceTop speed.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Format Standards

Indentations are four spaces.

Braces are placed on their own lines.

Blank lines are inserted to separate related lines of code and make the code

to read.

Line length is limited to eighty characters.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5

WHAT WOULD I DO DIFFERENT NEXT TIME?

For the most part, everything went well on this project. If I were to do anything

different next time, it would be to be more careful with the Design before going into the

Implementation. It is much easier to make changes in the Design than it is to rearrange

code and then go back and make the Design match it. What is even worse is when the

problem goes back to the Analysis. In that case the Design and the Analysis

documentation would all need to be updated. In a real life situation, this would be

compounded by meetings with the client and concerns about meeting the deadline.

Next, I learned to establish a naming convention for attributes, methods, classes,

and files before coming up with the names themselves. Not doing this on this project led

to a lot of time spent changing names to be in agreement. The most difficult name was

for a method which includes the name of a two word attribute. For example, top speed is

the correct format for the attribute name, according to the naming standards. Accessor

utility functions start with the word “Get” and then the attribute name that it gets. Since

method names have the first letter o f each word capitalized and the first letter of attribute

names capitalized, the correct name for the method would be GetTop_speed. However,

this did not look right to me, and before I have established a naming convention, some

methods may have been named such as GetTop_Speed, or Gettop speed. It would have

been good to have the coding standard in place early on in the project to avoid this

confusion.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 6

CONCLUSION

Development Model

Using the Waterfall model of software engineering, I developed the RaceGen

automatic program generator. RaceGen allows the user to produce a variety of racing

games without having any programming knowledge. I decided to use the Waterfall

model o f software engineering because it is divided up into separate phases which get

signed off as they are completed and then the process continues with the next phase. This

works well with the RaceGen project since there is only one software engineer. If there

were more software engineers, then possibly a different model would have been chosen.

Rapid Prototyping was not chosen because there was no need to have a version of the

software which has limited functionality [11], Since this is a thesis project, only the final,

fully functional version is of use. Another model, the Spiral model combines the features

of the prototyping model and the Waterfall model [12]. This model was not used,

because it is favored for large, expensive and complicated projects.

Why Automatic Program Generation?

Using RaceGen is different from using the parameters as inputs to control the

programs execution, because it actually generates only the code which is necessary for

the program to execute according to the parameters. This not only saves storage space,

but it also improves execution speed due to the avoidance of decision making which

would be required if the parameters controlled the programs execution. In addition,

RaceGen allows for easy expansion of the list of vehicles and track types. By providing

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the definition of the component to be added, the user merely needs to add the name to the

appropriate list on the questionnaire form for the component to be available in a

generated game. For example, if someone wants to add a kart vehicle, they need to create

a “kart.h” file and a “kart.cpp” file which contains the definition of a kart. Then just add

“kart” to the list of vehicles on the questionnaire form.

Extension of the Software

In order to improve RaceGen, the generated code would be made more

graphically realistic. However, since the focus of this thesis is the software engineering

process, not the appearance or physics of the gameplay of the generated code, these

improvements are not really considered as part of the scope of this project, yet will be

covered anyway. The tracks would be made more graphically intense as would the

vehicles. There could be a vehicle editor which the user could use to design a vehicle.

Moving a cursor around a grid and selecting the color of each cell in the grid, the user

would be able to design the appearance of the vehicle. The tracks could be designed

using a similar editor.

In addition to graphical enhancements, the artificial intelligence (or more

accurately, artificial stupidity) of the computer controlled vehicles could be made to be

more realistic. As it is, the computer vehicles do not collide, since the collision effects of

the player controlled vehicle are sufficient to verify that the code has been generated

properly. If the computer vehicles are allowed to react to collision effects, then there

would need to be code implemented which recovers the vehicles from a collision. This

recovery would include change of direction according to their position relative to the

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

obstacle and acceleration. If the computer vehicles are made to be artificially stupid (able

to collide), then it seems fitting for them to have the capability to avoid collisions. This

would include detection of collisions with obstacles and other vehicles. Therefore, this

would provide the ability of the computer controlled vehicles to steer around the course.

Once again, this is not a game programming thesis, so this functionality has been left as

extensions of this project.

Maintenance

In order for future developers to maintain the software they, they need to know

that the code to be edited is located in the “Library” folder. Editing the code in the

“Code” folder is useful only to test the changes to the generated code. However, since the

files in the “Code” folder are generated by RaceGen, they will be lost (written over) once

new code is generated by RaceGen. Any code that is dependent on questionnaire form

selections needs to be included in or excluded from the generated code based on those

selections. Therefore, the RaceGen code itself needs to be modified. This portion o f the

code is located in the code for the Damage form which is called when the Generate

button is clicked by the user.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDICES

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX A

SOFTWARE DEVELOPMENT DOCUMENTATION

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REQUIREMENTS DEFINITION

Requirement
Number
1 The software being developed will need to make racing games on its

own that can be played without having to do any computer
programming.

2 It has to be able to make a variety of games that are easy to build.

3 There needs to be a way for someone to select different things to be in
the game, like vehicles, tracks, and weather.

4 We should also be able to decide what kind of controls can be used to
play a game.

5 As far as the types of vehicles go, there will be cars, motorcycles,
airplanes, bicycles, boats, horses, and dogs available to select from.

6 There should be tracks available that those types of vehicles would race
on, like a street track, dirt track, a track in the sky, water, and a bicycle
racing track (called a “velodrome”).

7 The weather conditions should be optional for each game being made.
If the option is not wanted, then there will not be weather conditions in
the game. However, if the weather conditions are selected, whoever is
making the game should be able to select which kind of weather
conditions will be in the game, such as rain, snow, hail, and clouds.

8 There should be a way to make the chances of the weather being
different for each race. In that case, maybe there could be a way to
make one type of weather more common in a game. Like maybe I want
to have a lot o f rainy races and not much hail.

9 Someone should be able to specify what controls are available for each
game. Possible controls to select from would be keyboard and mouse.

10 If a game is made that allows more than one type of controller, then the
person playing the game should have an option to change it.

11 One type of controller will be set as the default by whoever is designing
the game.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12 If keyboard controls are available, there needs to be a way to assign
accelerate, brake, and steering to different keys by the game designer and
by the player if that is how the designer wants to make the game.

13 They could just be made a fixed set of keys.

14 Whoever is making a game should be able to name the game and display
the title for everyone who plays it to see.

15 When someone gets done with a race, they should be able to see a list of
high scores, if that is how the designer wants the make the game.

16 The tracks and vehicles should be chosen from a list so that the person
making a game does not have to design their own vehicles and tracks.

17 They should be able to set how many other vehicles are in the race.

18 They should be able to set the top speed of the vehicle.

19 There should be obstacles in the game for vehicles to crash into.

20 The user will assign the effects of obstacles on vehicles.

21 The user may choose to enable vehicle damage.

22 If vehicle damage is enabled, it will be incremental, such that each
amount of damage done to the vehicle will be kept track of.

23 When a vehicle has encountered an obstacle, damage will be assigned to
the vehicle.

24 Incremental damage may be opted to affect vehicle performance.

25 The effects of incremental damage on the performance of the vehicle will
be handling and top speed.

26 The user will select which sections of the vehicle affect speed or handling
when damaged.

27 The user will assign the damage tolerance for each vehicle. This is the
amount of damage that will cause the vehicle to breakdown and no longer
be able to drive at all.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

28 The game designer will have the ability to set the effect o f interaction
between different settings of the parameters. The settings that will
interact, thus affecting game play, are the following:

• Vehicle and track type
• Track and weather condition
• Vehicle and obstacles - concerning how the vehicle reacts

to the collision
• Front end of vehicle and obstacles - concerning what

permanent effect the collision has on the vehicle when hit
in front.

• Rear end of vehicle and obstacles - concerning what
permanent effect the collision has on the vehicle when hit
in the rear.

• Vehicle and speed

29 The game designer will be able to specify the number of laps per race.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

FUNCTIONAL SPECIFICATION

ICi|uiii.nk u
Number

I unetional (omponcnts

1 The RaceGen racing game program generator will provide a means for
the user to generate code for a racing game by entering selections from a
questionnaire. The code will be generated based on these selections
without any programming done by the user. Everything in the functional
specification, i.e. ease of use, user-friendliness is an overall goal of the
specification and will be addressed by all specifications. This
requirement will be satisfied by everything in the product.

2 The questionnaire forms will provide the user with a variety of choices
for game generation. The forms will be easy for the user to complete.
They will allow for easy navigation and be user-friendly.

14,15,17,29 The user will be able to enable or disable the high scores list, according
to the following GUI. The player will be able to enter initials to be
displayed with the score. The high scores will be stored in a file and be
listed in order at the end of a race.

The following is how the user will enter the title of the game. This title
will appear as the title of the window while the game is being played.

The following GUI will be used to assign the number of laps per race.
The allowable range is 1-99.

The following GUI will be used to allow the user to select how many
vehicles will be in the race, in addition to the player’s vehicle. The user
may enter from 0-5 additional vehicles.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■: - *]

, -Game Title- - — Other V ehicle;

Enter title jg ancj p r|V p ro i select Hi
J number >

Laps per R ace - < High S cores

Enter number of j ^ ̂ gg
laps per race ’ S R I H

Submit Cancel
--------------- —

Pressing the “Submit” button will accept the selections and continue to
the next page. Pressing the “Cancel” button will reject the selections and
exit RaceGen.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3,4,5,6,7,8,9,
11,12,13,16

The following Graphical User Interface (GUI) is used to select the vehicles,
tracks, weather, and controls:

iii, Setting? 1

-V e h ic le -

■1

IB

B oat
Cai
H orse
M otorcycle
Bicycle
Dog

W ater

Controls/c’efau,t
1

V fey b o a rd r?
■
m

F

MmSSmSSSSmmi
C onfigurable

C fixed |

fi configurab le

■B

K eyboard

left J T

right] T

accelerate J i .

b ra le J T

W eath er ,

,u rn y I T 0 9

r -rain j I.

'n o i i f 0

herl f o I

clouds f S

Submit

—
Cancel

Select the controls which are to be made available to the user by marking the
checkboxes to the left of the control name. Use the radio buttons to the right
to select the default control.

If more than one control type is selected from the GUI, then the player will
have the option of changing the controller.

For weather:
The numbers entered are used to determine the probability that the weather
condition will come up for a race. The weather conditions will be selected
before each race, based on these probabilities. Only one weather condition
will be applied to each race. The selected weather condition will be applied
for the entire race.

A higher number represents a more probable weather condition. If only one
entry is non-zero, then that weather condition will be applied to each race.
There must be at least one non-zero entry.

Pressing the “Submit” button will accept the selections and continue to the
next page. Pressing the “Cancel” button will reject the selections and return
to the previous page.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10, 12 The following menu is used by the player to start a race, assign keys for
keyboard
control if it is available and configurable is selected, and change controls if
both are available:

1) Start race
2) Configure keyboard
3) Change controls

These are the prompts for the user to configure the keyboard controls:

Enter Left:

Enter Right:

Enter Accelerate:

Enter Brake:

Once entries are made for each prompt, the keyboard keys will be
assigned.

When the user opts to change controls, mouse controls will be used if
keyboard was previously selected, and vice versa.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18,20,21,22,
23,24,26,27

The following GUI will be used for the user to set the top speed of the
vehicles for the selected vehicle type. The allowable range is 1-999. It
will be used by the user to enable or disable vehicle damage. It will be
used for the user to select either handling or top speed to be affected if
damage is assigned to the rear or front of the vehicle. The user will use it
to select the affect of a collision and to assign the damage tolerance for
each vehicle. The allowable range is 1-999.

When a vehicle is created, it will be initialized with zero damage. Each
time it is involved in a collision, if damage is enabled, an amount of
damage will be added to the vehicle’s total damage, according to the
following GUI. The amount entered is how much damage is done to the
vehicle. The allowable range is 1-99.

* V i* lm It D t j i ' i j q i

Top S p eed -t-

Airplane jfrT l 1 -093

D am age

'S triab le

r d r able

Vehicle T olerance

Airplane M r if 1-999 {V stop

-- s-. ■ 5. s-

Interaction T able

0 3 Street
Airplane j[T

front end

■ H r *l i j
, r rear

obctac’er speed

■ M g !

Hi
D am age per Coll'cion -

Airplane jT s i-g g

C clow _ r,

stop and replace
vehilce on track

D am age Effects Location

i- fiand'ing
ijajMBWBBiltaaM

P " tr p s,peeo

S unny

Rain

Sno'D

Hail

Clouds

w

W'
F
JT

Inter ac tu n ” a
to 9 O vil c a u - e t h e
l e a 't am nunt of effec t
o n th e interaction a n d 9
will c a u se th e m ost
e ffec t on rhe
interaction

a H
C a n c e l

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

23,28 The user will use the GUI table to set the effect of interaction between
different settings of the parameters.

Vehicle / track, track / weather, vehicle / speed:
The numbers represent the effect on vehicle handling. A higher
number will make steering more difficult. The vehicle will tend to
slide to the outside of turns.

Vehicle / obstacles:
If the spin or slow options are selected (see #21), then this is the
amount of spin or slow.

The above settings will affect the performance and handling of the vehicles.
A probability will be determined, based on the user defined settings, which
will be used to update the vehicle positions.

When the vehicle positions are updated, a check will be done to determine
if each vehicle has encountered an obstacle.

Once the damage to the car has been assigned, a check will be made to
determine if the car has reached its maximum damage tolerance.

When the vehicle positions are updated, a check will be done to determine
if each vehicle has crossed the finish line.

Pressing the “Generate” button will accept the selections and generate the
code. Pressing the “Cancel” button will reject the selections and return to
the previous page.

19 Obstacles will be placed alongside the track at various locations so that a
vehicle which stays on the track will not collide with one and a vehicle
which strays off the course must try to avoid them.

23,25
(see #26)

Whenever a vehicle is damaged and effects of damage on performance are
selected, either the handling or top speed will be reduced, based on the
location of the damage on the vehicle and the user’s selection of what is
affected by damage to that section.

Each vehicle will have a front section and a rear section. When the vehicle
is damaged, if top speed is assigned to that section by the user, the top speed
will be reduced. If handling is assigned to the damaged section, then the
vehicle will be more difficult to steer.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

USE CASE DIAGRAM

SelectSelect

SelectSelect

Enable/Disa
ble High

C ^ Enter <^^J3nter Laps per

r Select number of A .
vehicles

Select Vehicle damage
settings

A
User Select Vehicle top

speedComplete
Settings

Code
Generator

Initiate
Code

Compile

A
Player

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Insert code
for Track

fileCreate a new

Write the template
Insert
code for
WeatheInsert code for Vehicle

Insert code for Controls

Insert code for
Laps per raceInsert code for Title

Insert code for number of vehicles

Code
Generator Insert code for

enable/disable High Scores

Insert
code for
Vehicle
top speed

Insert code for Vehicle
damage settings

Insert code for Settings
Interaction Table

User
Save Generated Code

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SCENARIOS

The following are scenarios for RaceGen in which the user is a person who wants to
generate a racing game program and the player is a person who plays the game
designed by the user.

1) Scenario 1
a) User’s actions

i) Title form:
The user enters the title as “Grand Prix Pro,” enables high scores and assigns
4 laps per race. The user selects 0 other vehicles. The user clicks on the
submit button.

ii) Settings 1 form:
The user selects a car to race on a street track. The user enables keyboard and
mouse controls and selects keyboard as the default. The user selects fixed
keyboard controls and assigns A to left, D to right, W to accelerate, and S to
brake. The user selects weather to be 1 for sunny and 0 for the others. The
user clicks on the submit button.

iii) Vehicle/Damage form:
The user selects top speed of 200 and enables damage. The user selects
tolerance of 400, damage per collision of 25, stop and replace vehicle on track
when a collision occurs, and selects rear damage to affect top speed and front
damage to affect handling. The user enters car interacts with street track o f 0,
speed of 3, and obstacle of 4. The user enters sunny interacts with street track
of 0. The user clicks on the generate button.

iv) The user compiles and saves “Grand Prix Pro.”
b) Player’s actions

i) Player runs the “Grand Prix Pro” game.
ii) The weather is sunny.
iii) Player completes 4 laps without colliding with an obstacle.
iv) Player gets the high score and enters his/her initials.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2) Scenario 2
a) User’s actions

i) Title form:
The user enters the title as “Motocross Racer,” disables high scores and
assigns 8 laps per race. The user selects 3 other vehicles. The user clicks on
the submit button.

ii) Settings 1 form:
The user selects a motorcycle to race on a dirt track. The user enables mouse
controls. Mouse is automatically the default. The user cannot edit keyboard
controls. The user selects weather to be 0 for everything. The user clicks on
the submit button. The cursor moves to the sunny field, because the entries
may not be all zeroes. The user changes rain to 3. The user clicks the submit
button.

iii) Vehicle/Damage form:
The user selects top speed of 50 and disables damage. The user selects for the
motorcycle to slow when after a collision with an obstacle. The user cannot
edit the other settings. The user enters motorcycle interacts with dirt track of
2, speed of 2, and obstacle of 2. The user enters rain interacts with dirt track
of 6. The user clicks on the generate button.

iv) The user compiles and saves “Motocross Racer.”
b) Player’s actions

i) Player runs the “Motocross Racer” game.
ii) The weather is raining.
iii) Player completes 8 laps with many collisions with obstacles. Damage is

disabled, so the motorcycle is not damaged, but it does slow down.
iv) High scores are disabled, so the player’s score is not saved.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3) Scenario 3
a) User’s actions

i) Title form:
The user enters the title as “Air Rally,” enables high scores and assigns 3 laps
per race. The user selects 2 other vehicles. The user clicks on the submit
button.

ii) Settingsl form:
The user selects an airplane to race in the sky. The user enables keyboard
controls. Keyboard is automatically the default. The user selects configurable
keyboard controls and assigns A to left, D to right, W to accelerate, and S to
brake as the defaults. The user selects weather to be 1 for sunny and 0 for the
others. The user clicks on the submit button.

iii) Vehicle/Damage form:
The user selects top speed of 300 and enables damage. The user selects
tolerance of 200, damage per collision of 20, spin when a collision occurs, and
decides not to have damage effects, and so unchecks damage effects locations.
The user enters airplane interacts with sky of 0, speed of 1, and obstacle o f 9.
The user enters sunny interacts with sky of 1. The user clicks on the generate
button.

iv) The user compiles and saves “Air Rally.”
b) Player’s actions

i) Player runs the “Air Rally” game.
ii) The player does not like the keyboard configuration and changes A,W,D,S to

J,I,L,K.
iii) The weather is sunny.
iv) Player completes 2 laps, colliding with 10 obstacles. The airplane now has

reached its damage tolerance and the race is over.
v) Player does not get the high score, and does not get to enter initials.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4) Scenario 4
a) U ser’s actions

i) Title form:
The user enters the title as “Grand Prix Pro,” enables high scores and assigns
4 laps per race. The user selects 0 other vehicles. The user clicks on the
submit button.

ii) Settings 1 form:
The user selects a car to race on a street track. The user enables keyboard and
mouse controls and selects keyboard as the default. The user selects fixed
keyboard controls and assigns A to left, D to right, W to accelerate, and S to
brake. The user selects weather to be 1 for sunny, 1 for snow, and 0 for the
others. The user enters car interacts with street track of 0, speed of 3, and
obstacle of 4. The user enters sunny interacts with street track o f 0. The user
clicks on the submit button.

iii) Vehicle/Damage form:
The user selects top speed of 200 and enables damage. The user selects
tolerance of 400, damage per collision of 25, stop when a collision occurs, and
selects rear damage to affect top speed and handling and front damage to
affect top speed and handling also. The user clicks on the generate button.

iv) The user compiles and saves “Grand Prix Pro.”
b) Player’s actions

i) Player runs the “Grand Prix Pro” game.
ii) The player does not want to use keyboard controls, so changes to mouse

control.
iii) The weather is snowing.
iv) Player completes 4 laps while hitting many obstacles. Each time an obstacle

is hit, damage is assigned to the vehicle. The damage done to the front o f the
vehicle causes a decrease in handling and a lower top speed. Damage done to
the rear of the vehicle does the same.

v) Player gets the high score and enters his/her initials.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

NOUNS AND VERBS

accelerate_________
airplane___________
available control
bicycle___________
boat______________
brake_____________
car_______________
clouds____________
code______________
collision effect_____
configurable controls
controls___________
coordinate_________
current control_____
damage___________
damage effect______
damage per collision
damage tolerance
developer_________
direction__________
dirt_______________
dog_______________
fixed controls______
front of vehicle
GUI______________
hail_______________
high score list______
high scores file_____
horse_____________
initials____________
interaction parameter
laps per race_______
left_______________
motorcycle_________
mouse____________
obstacle___________
player_____________
position___________
questionnaire_______

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

race_______________________________________
RaceGen___________________________________
rain__
range______________________________________
rear of vehicle_______________________________
right_______________________________________
score_______________________________________
sky__
snow_______________________________________
speed______________________________________
start / finish line_____________________________
street______________________________________
time_______________________________________
title__
tolerance___________________________________
top speed___________________________________
track_______________________________________
track and weather interaction parameter__________
user__
vehicle_____________________________________
vehicle and obstacle interaction parameter________
vehicle and speed interaction parameter__________
vehicle and track type interaction parameter______
vehicle damage______________________________
vehicle damage tolerance______________________
vehicle front end and obstacle interaction parameter
vehicle handling_____________________________
vehicle position______________________________
vehicle rear end and obstacle interaction parameter
velodrome__________________________________
water_______________________________________
weather_____________________________________
weather condition probabilities_________________
weather condition weight______________________

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

add damage
affect handling____________________
affect top speed___________________
assign damage____________________
calculate score____________________
calculate next vehicle position_______
calculate weather condition probability
cancel___________________________
cause vehicle to breakdown_________
change control____________________
check collision____________________
check if vehicle crossed finish line
check maximum damage____________
collide with an obstacle_____________
determine weather condition_________
disable high scores_________________
disable vehicle damage_____________
display high scores_________________
enable high scores_________________
enable vehicle damage______________
generate code_____________________
reduce handling___________________
reduce top speed___________________
set available controls_______________
set configurable controls____________
set current control_________________
set damage effects_________________
set damage per collision____________
set default control__________________
set initials________________________
set interaction parameter____________
set keyboard keys__________________
set number of laps per race__________
set number of other vehicles_________
set title___________________________
set top speed______________________
set vehicle damage tolerance_________
set weather condition_______________
slide_____________________________
slow_____________________________
sort high scores____________________

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

stop and replace vehicle on track_____
store high scores___________________
submit___________________________
update vehicle positions_____________
validate damage per collision________
validate number of laps per race______
validate vehicle damage tolerance
validate weather condition probabilities

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

DATA DICTIONARY

N o u n s Definit ion
accelerate A key to make the vehicle go faster.
airplane A vehicle that would typically be in the sky.
available control A control which the user allows the player

to use during a race.
bicycle A vehicle that would typically be in a

velodrome.
boat A vehicle that would typically be in the

water.
brake A key to make the vehicle go slower.
car A vehicle that would typically be on a street

track.
clouds A weather condition which may limit

visibility.
code The instructions which the computer

executes for a player to play a game.
configurable control A control which the player may assign

functions to.
controls What the player uses to drive a vehicle.
coordinate The x and y position on the track.
current control The control that the player is using.
damage See vehicle damage.
damage effects What is affected by damage to the front or

rear of a vehicle. Either top speed,
handling or neither.

damage per collision See vehicle damage per collision.
damage tolerance See vehicle damage tolerance.
developer A person who is designing the RaceGen

software.
direction The angle that the vehicle is moving.
dog A small animal which is considered to be a

vehicle.
fixed controls A control which the player is not allowed to

configure.
front of vehicle The section of the vehicle forward of the

midpoint.
GUI Graphical User Interface. It is used for the

user or player to interact with the computer
and make selections that will be used by the
computer.
46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

hail A weather condition of icy chunks falling
from the sky.

high score list The highest scores and the initials of the
players who scored them.

high scores file Where the high scores are stored.
horse A large animal which is considered to be a

vehicle.
initials The first letter of the first, middle, and last

name of a player.
interaction parameter A value entered by the user to determine

the outcome of two factors acting on one
another.

laps per race How many times the vehicle must complete
a circuit of the track to complete a race.

left A key to steer the vehicle to the left.
motocross A hilly, dirt track.
motorcycle A vehicle that would typically be on a street

track or a dirt track.
mouse A controller with a ball and two or three

buttons.
obstacle Something which a player must try to avoid

while racing.
player A person who plays the game which the

user generated with RaceGen.
position The coordinates of the location on the track.
questionnaire A form requiring a series of selections to be

made by the user in order to generate a
game.

race Driving a vehicle around a track.
RaceGen Software used to automatically generate

code for racing games.
rain A weather condition of water droplets

falling from the sky.
range Used to identify the set o f valid inputs.
rear of vehicle The section of the vehicle behind the

midpoint.
right A key to steer the vehicle to the right.
score A value assigned at the end of a race which

represents the skill of the player.
sky A track in the air.
snow A weather condition of snowflakes falling

from the sky.
speed See vehicle speed.
start / finish line The location across the track where a

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

vehicle starts behind and must cross to
complete a lap.

street A flat, paved track.
time The length of the race. Used to calculate

the score.
title A name which the user assigns to a game

being generated.
top speed The maximum velocity of a vehicle.
total probability The sum of the weather condition

probabilities.
tolerance See vehicle damage tolerance.
track The course which the vehicles must follow

in order to complete laps.
track and weather interaction parameter A value entered by the user to determine

the outcome of weather acting on a track.
user A person who uses RaceGen to generate

code for a racing game.
vehicle An object driven on a track by the player in

order to complete a race.
vehicle and obstacle interaction
parameter

A value entered by the user to determine
the outcome of an obstacle acting on a
vehicle.

vehicle and speed interaction parameter A value entered by the user to determine
the outcome of speed acting on a vehicle.

vehicle and track type interaction
parameter

A value entered by the user to determine
the outcome of a track type acting on a
vehicle.

vehicle damage A value which represents the amount
suffering an obstacle inflicts upon a vehicle.

vehicle damage per collision The amount of damage which would be
assigned to the vehicle for each collision.

vehicle damage tolerance The amount of damage that will cause a
vehicle to breakdown and no longer be
driven.

vehicle front end and obstacle
interaction parameter

A value entered by the user to determine
the outcome of an obstacle acting on the
front end of a vehicle.

vehicle handling The ability of the vehicle to steer.
vehicle position The location of a vehicle with respect to the

track
vehicle rear end and obstacle
interaction parameter

A value entered by the user to determine
the outcome of an obstacle acting on the
rear end of a vehicle.

vehicle speed The distance a vehicle travels per unit o f

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

time.
velodrome A banked oval track.
water An aquatic track.
weather Elemental effects which could influence

how a vehicle performs.
weather condition probabilities Values for a weather condition which are

used to determine how commonly it will
occur in a race.

weather condition weight Values for a weather condition which are
used to calculate the probabilities.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Accelerate Make the vehicle go faster.
add damage Increase a damage value assigned to a

vehicle due to a collision.
affect handling Influence the handling of a vehicle due to a

collision.
affect top speed Influence the top speed of a vehicle due to

a collision.
assign damage Affect either handling or top speed or

neither, based on the front and rear damage
effects.

brake Make the vehicle go slower.
calculate next vehicle position Determine the new location o f a vehicle

after it moves.
calculate score Determine the score, based on the player’s

performance.
calculate weather condition probability Determine the probability value for a

weather condition, based on the value
entered for it and the other weather
conditions by the user.

cancel Reject the current questionnaire form
selections and return to the previous form.

cause vehicle to breakdown A vehicle is so damaged that it can no
longer be driven.

change control Use a control other than the current control.
check collision Determine if the vehicle collides with an

obstacle.
check if vehicle crossed finish line Determine if the vehicles new location will

place it on the other side o f the finish line,
indicating a completed lap.

check maximum damage Determine if the amount o f damage
assigned to the vehicle has equaled or
exceeded the vehicle damage tolerance.

collide with an obstacle An intersection of a vehicle and an
obstacle.

collision effect How the vehicle reacts to a collision.
determine weather condition Determine which weather condition will be

applied to a race.
disable high scores Do not allow a high score list to be

generated or displayed.
disable vehicle damage Do not allow a vehicle to be damaged.
display high scores Show the player a list of the highest scores

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and the initials of the player who got them.
enable high scores Generate and display a high score list after

each race.
enable vehicle damage Allow a vehicle to be damaged.
generate code Create a computer program, based on the

selections made by the user.
reduce handling Make the vehicle more difficult to steer.
reduce top speed Make the maximum speed of the vehicle

lower.
set available controls Set which controls the player will be able

to use in a race.
set configurable controls Set whether controls will be fixed or

configurable.
set current control Set which control will be used in the race.

This is automatically done if there is only
one available control and the user will not
be able to set it.

set damage effects Set whether handling and/or top speed, or
neither will be affected when damage is
done to the front or rear of the vehicle.

set damage per collision Set a value which will be added to the
vehicle damage after a collision.

set default control Set a control to be the default. If there is
only one available control, then it will be
the default.

set initials Initials are entered into the high score list.
set interaction parameter Values are entered into the interaction

table.
set keyboard keys Set which keyboard keys will be used to

control the vehicle.
set number of laps per race Set how many laps will complete a race.
set number of other vehicles Set how many vehicles will be in the race

in addition to the player’s vehicle.
set title Set the name for the game being generated.
set top speed Set a maximum value for the speed of the

vehicle.
set vehicle damage tolerance Set the amount of damage that will cause a

breakdown of the vehicle.
set weather condition Apply the selected weather condition to a

race.
slide The vehicle moves toward the outside o f a

turn
slow The speed of a vehicle is reduced.
sort high scores Alphabetize the list of high scores.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

spin The vehicle rotates upon a vertical axis
through its center.

steer left Steer the vehicle to the left.
steer right Steer the vehicle to the right.
stop and replace vehicle on track The vehicle speed is set to zero and its

location is updated to a position on the
track.

store high scores The high score list is saved on a disk.
submit Accept the current questionnaire form

selections and advance to the next form.
unused control The control which is not the current control
update vehicle positions Move the vehicle’s location.
validate damage per collision Determine if the user’s input is within

range.
validate number of laps per race Determine if the user’s input is within

range.
validate vehicle damage tolerance Determine if the user’s input is within

range.
validate weather condition probabilities Determine if the user’s input is within

range.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CLASSES, ATTRIBUTES, AND METHODS

N o u n s C lass \ t t r i b u t c M e th o d
accelerate X
airplane X
available control X
bicycle X
boat X
brake X
car X
clouds X
code X
configurable controls X
controls X
current control X
damage per collision X
dirt X
dog X
fixed controls X
front of vehicle X
GUI X
hail X
high score list X
horse X
initials X
interaction parameter X
laps per race X
left X
motorcycle X
mouse X
obstacle X
rain X
rear of vehicle X
right X
score X
sky X
snow X
start / finish line X
street X
title X
top speed X
track X

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

track and weather interaction
parameter

X

vehicle X
vehicle and obstacle
interaction parameter

X

vehicle and speed interaction
parameter

X

vehicle and track type
interaction parameter

X

vehicle damage X
vehicle damage tolerance X
vehicle front end and obstacle
interaction parameter

X

vehicle handling X
vehicle position X
vehicle rear end and obstacle
interaction parameter

X

velodrome X
water X
weather X
weather condition
probabilities

X

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

\ 1 c t h o d
add damage X
affect handling X
affect top speed X
calculate score X
calculate vehicle position
probability

X

calculate weather condition
probability

X

cancel X
cause vehicle to breakdown X
change control X
check collision X
check if vehicle crossed finish
line

X

check maximum damage X
collide with an obstacle X
determine weather condition X
disable high scores X
disable vehicle damage X
display high scores X
enable high scores X
enable vehicle damage X
generate code X
reduce handling X
reduce top speed X
set available controls X
set configurable controls X
set current control X
set damage effects X
set damage per collision X
set default control X
set initials X
set interaction parameter X
set keyboard keys X
set number of laps per race X
set number of other vehicles X
set title X
set top speed X
set vehicle damage tolerance X
set weather condition X
slide X

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

slow X
sort high scores X
spin X
stop and replace vehicle on
track

X

store high scores X
submit X
update vehicle positions X
validate damage per collision X
validate number of laps per
race

X

validate vehicle damage
tolerance

X

validate weather condition
probabilities

X

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CLASS DIAGRAM OF CODE GENERATOR

Library 1..* 1
A

G enerator Code

1 1

GUI

TitleForm SettingsForm D am ageForm

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CLASS DIAGRAM OF GENERATED CODE

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H
ighS

coreL
ist

www.manaraa.com

CLASS DIAGRAM CATALOG

Class \tlrihiiles Methods
Game title IsRaceOver

laps_per_race End
vehicles in race
track_sunny_interaction
track rain interaction
track snow interaction
track hail interaction
track clouds interaction
vehicle obstacle interaction
vehicle track interaction
front obstacle interaction
rear obstacle interaction
vehiclespeedinteraction
track
high_score_list
score
keyboard

C lass Mti ilbules Methods
Track comp DisplayLaps

Finish line IsCollision
obst CheckLap

GrandPrix
Mirithutes Methods

Class Mtrilhutes Methods
Dirt

Sky

(kiss Vltrilhiites Methods

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Water

Class \tt lit hiiles Methods
Velodrome

(lass Vlliihulcs Methods
Obstacle xpos Display

ypos GetXpos
GetYpos
SetPos

Class Mtrihiitcs Methods
Coord X GetX
y y GetY

SetX
SetY

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Class Mtrithiites Methods
Vehicle race time Accelerate

damage Brake
position SteerLeft
speed SteerRight
direction CalculateNextV ehiclePosition
next position HitObstacle
top speed AddDamage
top speed min IsMaxDamage
handling Slide
handling min Stop
damage per collision Spin
damage tolerance Slow
rear effect StopReplace
front effect AssignDamage
turn IsTopSpeedMin
laps IsHandlingMin
new lap UpdatePosition
collision GetDamage

GetPos
GetSpeed
GetNext pos
GetTopspeed
GetHandling
GetDamage tolerance
GetTum
GetNew lap
GetCollision
SetDirection
SetTum
IncLaps
SetNew_lap
SetSpeed
SetCollision
Display

C lass Mtrithiili's Methods
Car Display

Class Attritbules Methods

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Motorcycle Display

Class \(ti ilhutes Methods I
Airplane Display |

Class • . / Mlrilhiiles Methods <

Bicycle Display

(lass Mtrithutcs Methods
Boat Display

Class Mtriihulis Methods
Horse Display

(lass Mlrilhiiles Methods
Dog Display

Section
Mlritbiifes Methods

ReduceHandling
ReduceTop Speed

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Class M tributes Methods %
Weather total_probability CalculateWeatherConditionProbability

probability DetermineW eatherCondition
weight SumWeights

Display

Class Mtrihutes Methods
Rain Display

(lass Mlnbules Methods
Snow Display

(lass M tributes Methods
Hail Display

Class Vtlrihiiles Methods
Clouds Display

C ldss \t 11 ihii It s Mi'lhods
Sunny Display

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(lass Mti'ihules Methods
Keyboard current control ConfigureKeys

dfault
left_key
rightkey
accelerate_key
brakekey

(lass Mtrihules Methods
Left assigned GetAssigned

SetAssigned

(lass Attributes Methods
Right assigned GetAssigned

SetAssigned

Class Mlrihiites Methods
Accelerate assigned GetAssigned

SetAssigned

(lass \lti ihulcs Methods
Brake assigned GetAssigned

SetAssigned

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

< loss \tli Unites Methods
Score points GetPoints

prevclock CalculatePoints

Methods
EnterlnitialsHighScoreList entry
Display
Load
Store
Sort
Update
GetS core

Class Mti Unites Methods
ListEntry points

initials

(lass MtrUniles Methods
FinishLine endptl Display

endpt2 SetEndptl
SetEndpt2

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(hiss Mtrihntes Methods
Generator GUI

Code
Library

u ti l
Mlrihiifes

TitleForm
Methods ,

t * ¥

SettingsForm
DamageForm

Class Mtribnles Methods w i s k % d i k i l V

TitleForm cmdSubmit Form Load
cmdCancel cmdSubmit Click
txtLaps cmdCancel Click
txtTitle txtLapsV alidate
optEnable txtTitle Validate
optDisable

(lass Vltrihntes Methods
SettingsForm cmdSubmit Form Load

cmdCancel cmdSubmit Click
IstVehicle cmdCancel Click
IstTrack chkKeyboard Click
chkKeyboard chkMouse Click
chkMouse optConfigurableClick
optFixed txtSunny_V alidate
optConfigurable txtRain Validate
txtLeft txtSnow Validate
txtRight txtHail Validate
txtAccelerate txtClouds Validate
txtBrake
txtSunny
txtRain
txtSnow
txtHail
txtClouds

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Class Mtrihufcs Methods
DamageForm cmdGenerate Form Load

cmdCancel cmdGenerate Click
txtSpeed cmdCancel Click
txtTolerance optDisableClick
txtDamage optEnableClick
optEnable txtDamageV alidate
optDisable txtSpeedV alidate
optStop txtTolerance Validate
optSlow txtVehicleTrack Validate
optSpin txtV ehicleSpeedV alidate
optReplace txtFront Validate
chkRearHandling txtRear Validate
chkRearT opSpeed txtSunnyV alidate
chkFrontHandling txtRain Validate
chkFrontT opSpeed txtSnow Validate
txtVehicleTrack txtHail Validate
txtV ehicleObstacle txtClouds Validate
txtVehicleSpeed
txtFront
txtRear
txtSunny
txtRain
txtSnow
txtHail
txtClouds
lbl Vehicle
lblSpeed
lblTolerance
lblDamage
lblTrack

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

METHODS

Game
void End()
//preconditions: none
//postconditions: Message is displayed on screen to play again.

bool IsRaceOver(Vehicle) const
//preconditions: none
//postconditions: Returns true if the race is over.

Track
DisplayLaps()
//preconditions: none
//postconditions: Number of laps for the vehicle is displayed.

bool IsCollision(Obstacle, Vehicle)
//preconditions: Next vehicle position has been calculated,
//postconditions: Returns true if collision, false otherwise.

bool IsCollision(Vehicle,Vehicle)
//preconditions: Next vehicle position has been calculated,
//postconditions: Returns true if collision, false otherwise.

bool CheckLap(Vehicle &)
//preconditions: none
//postconditions: Return true if the vehicle has just completed a lap.

Obstacle
void Display()
//preconditions: none
//postconditions: The obstacle is displayed.

float GetXpos() const
//preconditions: none
//postconditions: Returns the x position of the obstacle.

float GetYpos() const
//preconditions: none
//postconditions: Returns the y position of the obstacle,

void SetPos(float, float)
//preconditions: The x and y values must be between -140 and 140.
//postconditions: Sets the x and y values for the obstacle.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Coord
float GetX() const
//preconditions: none
//postconditions: Returns the X position.

float GetY() const
//preconditions: none
//postconditions: Returns the Y position.

void SetX(float)
//preconditions: The x value must be between -140 and 140.
//postconditions: Sets the X position.

void SetY(float)
//preconditions: The y value must be between -140 and 140.
//postconditions: Sets the Y position.

Vehicle
void Accelerate()
//preconditions: none
//postconditions: Speed is increased.

void Brake()
//preconditions: none
//postconditions: Speed is decreased.

void SteerLeft()
//preconditions: none
//postconditions: Direction is decreased.

void SteerRight()
//preconditions: none
//postconditions: Direction is increased.

Coord CalculateNextV ehiclePosition()
//preconditions: The vehicle is moving.
//postconditions: Returns the next position for the vehicle to move,

void HitObstacle()
//preconditions: Vehicle position is the same as the obstacle position,
//postconditions: Damage is handled.

void AddDamage()
//preconditions: Damage is enabled.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

//postconditions: Damage is increased for the vehicle.

bool IsMaxDamage()
//preconditions: none
//postconditions: Returns true if damage equals or exceeds tolerance, false

otherwise.

void Slide()
//preconditions: Collision effect is Slide.
//postconditions: Vehicle is moved along a straight line.

void Stop()
//preconditions: Collision effect is Stop.
//postconditions: Vehicle speed is zero.

void Spin()
//preconditions: Collision effect is Spin.
//postconditions: Vehicle is rotated.

void Slow()
//preconditions: Collision effect is Slow.
//postconditions: Vehicle speed is reduced.

void StopReplace()
//preconditions: Collision effect is StopReplace.
//postconditions: Vehicle is centered on track and speed is zero.

void AssignDamage(bool)
//preconditions: The value passed in is true if damage is to be assigned to the

front.
//postconditions: Damage is assigned to the appropriate section.

bool IsTopSpeedMin()
//preconditions: none
//postconditions: Returns true if top_speed is at the minimum.

bool IsHandlingMin()
//preconditions: none
//postconditions: Returns true if handling is at the minimum,

void UpdatePosition()
//preconditions: next_pos has been calculated.
//postconditions: Sets pos equal to next_pos.

Car

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

void Display(float, float, float)
//preconditions: Color is passed in as red, green, and blue values,
//postconditions: Vehicle is displayed on the track.

Motorcycle
void Display(float, float, float)
//preconditions: Color is passed in as red, green, and blue values,
//postconditions: Vehicle is displayed on the track.

Airplane
void Display(float, float, float)
//preconditions: Color is passed in as red, green, and blue values,
//postconditions: Vehicle is displayed on the track.

Bicycle
void Display(float, float, float)
//preconditions: Color is passed in as red, green, and blue values,
//postconditions: Vehicle is displayed on the track.

Boat
void Display(float, float, float)
//preconditions: Color is passed in as red, green, and blue values,
//postconditions: Vehicle is displayed on the track.

Horse
void Display(float, float, float)
//preconditions: Color is passed in as red, green, and blue values,
//postconditions: Vehicle is displayed on the track.

Dog
void Display(float, float, float)
//preconditions: Color is passed in as red, green, and blue values,
//postconditions: Vehicle is displayed on the track.

Section
void ReduceHandling(float &)
//preconditions: The value must be between 0 and 1.
//postconditions: handling is reduced.

void ReduceTopSpeed(int &)
//preconditions: The value must be between 1 and 999.
//postconditions: top_speed is reduced.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

void SetFactor(fint)
//preconditions: The value must be between 0 and 9.
//postconditions: the factor is set.

Weather
int DetermineW eatherCondition(std:: vector<float>)
//preconditions: Probabilities have been calculated to values between 0 and 1.

Values are pushed into the vector.
//postconditions: A weather condition is determined.

Rain
void Display()
//preconditions: This weather condition is active.
//postconditions: Weather condition is displayed.

Snow
void Display()
//preconditions: This weather condition is active.
//postconditions: Weather condition is displayed.

Hail
void Display()
//preconditions: This weather condition is active.
//postconditions: Weather condition is displayed.

Clouds
void Display()
//preconditions: This weather condition is active.
//postconditions: Weather condition is displayed.

Sunny
void Display()
//preconditions: This weather condition is active.
//postconditions: Weather condition is displayed.

Keyboard
void ConfigureKeys()
//preconditions: Keyboard is available and configurable.
//postconditions: Keys are assigned to Left, Right, Accelerate, and Brake.

Left
char GetAssigned() const
//preconditions: Keyboard is current control. Value must be a valid keyboard key.
//postconditions: Returns the key assigned to Left.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

void SetAssigned(char)
//preconditions: Keyboard is current control.
//postconditions: Assigns a key to Left.

Right
char GetAssigned() const
//preconditions: Keyboard is current control. Value must be a valid keyboard key.
//postconditions: Returns the key assigned to Right.

void SetAssigned(char)
//preconditions: Keyboard is current control.
//postconditions: Assigns a key to Right.

Accelerate
char GetAssigned() const
//preconditions: Keyboard is current control. Value must be a valid keyboard key.
//postconditions: Returns the key assigned to Accelerate.

void SetAssigned(char)
//preconditions: Keyboard is current control.
//postconditions: Assigns a key to Accelerate.

Brake
char GetAssigned() const
//preconditions: Keyboard is current control. Value must be a valid keyboard key.
//postconditions: Returns the key assigned to Brake.

void SetAssigned(char)
//preconditions: Keyboard is current control.
//postconditions: Assigns a key to Brake.

Score
void CalculatePoints(int)
//preconditions: Race is ended. Time is positive,
//postconditions: Points are updated.

int GetPoints() const
//preconditions: none
//postconditions: Points are returned.

HighS coreList
void Load()
//preconditions: High score file exists.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

//postconditions: High scores are loaded,

void AddListEntry(int)
//preconditions: The score is passed in as positive number.
//postconditions: A list entry is added to the list.

void Display() const
//preconditions: High Score List is enabled.
//postconditions: none

void Store() const
//preconditions: High Score List is enabled and contents of high score list file has

been input
//postconditions: High scores and initials are stored in HighScores.txt.

void Sort()
//preconditions: High Score List is enabled.
//postconditions: High scores are sorted in descending order.

int GetLowScore() const
//preconditions: none
//postconditions: Returns the low score on the list.

ListEntry
void SetPoints(int)
//preconditions: Points must be positive.
//postconditions: Points are set.

void Setlnitials(string)
//preconditions: Initials must not be more than three characters.
//postconditions: Initials are set.

FinishLine
void Display()
//preconditions: none
//postconditions: Finish Line is displayed on the track,

void SetEndptl(Coord)
//preconditions: x and y coordinates are between -140 and 140.
//postconditions: X and Y positions are set for the endpoint.

void SetEndpt2(Coord)
//preconditions: x and y coordinates are between -140 and 140.
//postconditions: X and Y positions are set for the endpoint.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B

PREGENERATED HEADER FILES

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Accelerate.h

#ifndef ACCELERATE_H
#define ACCELERATE_H

class Accelerate
{

p u b l i c :
Accelerate();
-Accelerate();

char GetAssigned() const;
//preconditions: none
//postconditions: Returns the key assigned to Accelerate.

// set assigned

private:
char assigned;

} ;

#endif

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Airplane.h

ttifndef AIRPLANE_H
#define AIRPLANE_H

#include "Coord.h"
#include "Obstacle.h"
#include "Section.h"
#include 11 Vehicle, h"

#include "glut.h"
inc lude 11 m a t h . h "

class Airplane:public Vehicle
{

public:
Airplane();
Airplane(int, int, int, int, int, int, int, int, int);
-Airplane();

void Display(float, float, float);
//preconditions: Colors passed in are valid red, green and

blue
/ / values.
//postconditions: Vehicle is displayed on the track.

} ;

#endif

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Bicycle.h

#ifndef Bicycle_H
#define Bicycle_H

#include "Coord.h"
ttinclude "Obstacle.h"
#include "Section.h"
ttinclude "Vehicle.h"

ttinclude "glut.h"
ttinclude "math.h"

class Bicycle:public Vehicle
{

public:
Bicycle();
Bicycle(int, int, int, int, int, int, int, int, int) ,-
-Bicycle();

blue

} ;

ttendif

void Display(float, float, float);
//preconditions: Colors passed in are valid red, green and

// values.
//postconditions: Vehicle is displayed on the track.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Boat.h

#ifndef Boat_H
#define Boat_H

#include "Coord.h"
#inciude "Obstacle.h"
ttinclude "Section.h"
ttinclude "Vehicle.h"

ttinclude "glut.h"
ttinclude "math.h"

class Boat:public Vehicle
{

public:
Boat();
Boat(int, int, int, int, int, int, int, int, int) ;
-Boat();

blue

} ;

ttendif

void Display(float, float, float);
//preconditions: Colors passed in are valid red, green and

// values.
//postconditions: Vehicle is displayed on the track.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Brake.h

#ifndef BRAKE_H
#define BRAKE_H

class Brake
{

public:
Brake();
-Brake();

char GetAssigned() const;
//preconditions: none
//postconditions: Returns the key assigned to Brake.

// set assigned

private:
char assigned;

} ;

#endif

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Car.h

#ifndef CAR_H
#define CAR_H

ttinclude "Coord.h"
ttinclude "Obstacle.h"
ttinclude "Section.h"
ttinclude "Vehicle.h"

ttinclude "glut.h"
ttinclude "math.h11

class Car:public Vehicle
{

public:
C a r () ;
Car(int, int, int, int, int, int, int, int, int);
-Car();

blue

} ;

ttendif

void Display(float, float, float);
//preconditions: Colors passed in are valid red, green and

// values.
//postconditions: Vehicle is displayed on the track.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Clouds.h

#ifndef CLOUDS_H
#define CLOUDS_H

#include "Weather.h"

class Clouds : public Weather
{

public:
Clouds(float);
-Clouds();

void Display() const;
//preconditions: none
//postconditions: Displays the weather condition.

};

#endif

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Coord.h

#ifndef COORD_H
ttdefine COORD_H

class Coord
{

public:
Coord();
Coord(float, float);
-Coord();

float GetX() const;
//preconditions: none
//postconditions: Returns the x position.

float GetY() const;
//preconditions: none
//postconditions: Returns the x position.

void SetX(float);
//preconditions: Value must be between -140 and 140.
//postconditions: Sets the x position.

void SetY(float);
//preconditions: Value must be between -140 and 140.
//postconditions: Sets the x position.

private:
float x;
float y;

} ;

#endif

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Dirt. h

ttifndef DIRT_H
#define DIRT_H

ttinclude "Track.h"

#include<vector>

class D i r t : public Track
{

p u b l i c :
D i r t ();
-Dirt() ;

std::vector<Obstacle> obst;

p r i v a t e :
Finish_line fl;

} ;

ttendif

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Dog.h

#ifndef Dog_H
#define Dog_H

#include "Coord.h"
#include "Obstacle.h"
ttinclude "Section.h"
ttinclude "Vehicle.h"

ttinclude "glut.h"
ttinclude "math.h"

class Dog:public Vehicle
{

public:
D o g ();
Dog(int, int, int, int, int, int, int, int, int);
-Dog();

blue

} ;

ttendif

void Display(float, float, float);
//preconditions: Colors passed in are valid red, green and

// values.
//postconditions: Vehicle is displayed on the track.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Finish_line.h

#ifndef FINISH_LINE_H
#define FINISH_LINE_H

ttinclude "Coord.h"

class Finish_line
{

public:
Finish_line();
~Finish_line();

void SetEndptl(Coord);
//preconditions: Vaild x and y coordinates
//postconditions: x and y coordinates set.

void SetEndpt2(Coord);
//preconditions: Valid x and y coordinates
//postconditions: x and y coordinates set.

void DisplayO;
//preconditions: none
//postconditions: Finish line is displayed

private:
Coord endptl;
Coord endpt2;

} ;

ttendif

87

are passed in

are passed in

on the track.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Game.h

#ifndef GAME_H
#define GAME_H

// track header file
ttinclude "Score.h"
ttinclude "Weather.h"
// header files

class Game
{

public:
Game();
Game(char*, int, int, float, float, float, float,

float, float, float, int, int, float);
-Game();

char* GetTitleO const;
//preconditions: none
//postconditions: Returns title.

int GetLaps per race() const;
//preconditions: none
//postconditions: Returns laps per race.

int GetVehicle_in_race() const;
//preconditions: none
//postconditions: Returns number of vehicles in race.

float GetVehicle_speed_interaction() const;
//preconditions: none
//postconditions: Returns factor for interaction between

vehicle
and speed.

float Calculatelnteraction();
//preconditions: factors vector contains weather vs. track
// interaction factors
//postconditions: Calculates and returns interaction.

float Getlnteraction() const;
//preconditions: none
//postconditions: Returns interaction.

bool IsRaceOver(Vehicle) const;
//preconditions: none
//postconditions: Returns true if the race is over.

void E n d ();
//preconditions: none
//postconditions: Message is displayed on screen to close

window.

// track declaration
88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// high score declaration
Score scr;
// keyboard declaration

private:
char* title;
int laps_per_race;
int vehicles_in_race;
float track_sunny_interaction;
float track_rain_interaction;
float track_snow_interaction;
float track_hail_interaction;
float track_clouds_interaction;
float vehicle_obstacle_interaction,-
float vehicle_track_interaction;
int front_obstacle_interaction;
int rear_obstacle_interaction;
float vehicle_speed_interaction;
int wthr_sel;
float interaction;
std::vector<float> factors;

} ;

#endif

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Hail.h

#ifndef HAIL_H
#define HAIL_H

ttinclude "Weather.h"

class Hail : public Weather
{

public:
H a i l (float);
-Hail();

void Display() const;
//preconditions: none
//postconditions: Displays the weather condition.

} ;

ttendif

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: HighHighScoreListList .h

#ifndef HighScoreList_H
#define HighScoreList_H

#include<vector>
#include<string>
#include "ListEntry.h"

using namespace std;

class HighScoreList
{

pu b l i c :
HighScoreList () ;
-HighScoreList() ;

void AddListEntry(int);
//preconditions: Value must be a positive number,
//postconditions: A list entry is added to the list

void Display();
//preconditions: none
//postconditions: High score list is displayed,

void Load();
//preconditions: High score list file exists,
//postconditions: High scores are loaded.

void Store();
//preconditions: none
//postconditions: High scores are saved.

void Sort();
//preconditions: none
//postconditions: High scores are sorted.

int GetLowScore() const;
//preconditions: none
//postconditions: Low score on the list is returned

private:
std: :vector<ListEntry> scores;

} ;

#endif

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Horse.h

ttifndef Horse_H
#define Horse_H

ttinclude "Coord.h"
ttinclude "Obstacle.h"
ttinclude "Section.h"
ttinclude "Vehicle.h"

ttinclude "glut.h"
ttinclude "math.h"

class Horse:public Vehicle
{

public:
Horse();
Horse(int, int, int, int, int, int, int, int, int);
-Horse();

blue

} ;

ttendif

void Display(float, float, float);
//preconditions: Colors passed in are valid red, green and

/ / values.
//postconditions: Vehicle is displayed on the track.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Keyboard.h

#ifndef KEYBOARD_H
#define KEYBOARD_H

#include"Left.h"
#include"Right.h"
#include11 Accelerate . h"
include"Brake.h "

class Keyboard
{

public:
Keyboard();
-Keyboard();

// configure keys
// control methods

Left left_key;
Right right_key;
Accelerate accelerate_key;
Brake brake_key;

// private
} ;

#endif

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Left.h

#ifndef LEFT_H
#define LEFT_H

class Left
{

public:
L e f t ();
-Left();

char GetAssigned() const;
//preconditions: none
//postconditions: Returns the key assigned to Left.

// set assigned

private:
char assigned;

} ;

#endif

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: ListEntry.h

#ifndef LISTENTRY_H
#define LISTENTRY__H

#include<string>

using namespace std;

class ListEntry
{

public:
ListEntry();
-ListEntry();

int GetPointsO const;
//preconditions: none
//postconditions: Return points.

string Getlnitials() const;
//preconditions: none
//postconditions: Return initials.

void SetPoints(int);
//preconditions: Value must be positive,
//postconditions: Points are set.

void Setlnitials(string);
//preconditions: No more than three characters may be

passed in.
//postconditions: Initials are set.

private:
int points;
string initials;

} ;

#endif

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Motorcycle.h

#ifndef Motorcycle_H
#define Motorcycle_H

#include "Coord.h"
#include "Obstacle.h"
#include "Section.h"
#include "Vehicle.h"

#include "glut.h"
#include "math.h"

class Motorcycle:public Vehicle
{

public:
Motorcycle() ;
Motorcycle(int, int, int, int, int, int, int, int, int) ;
-Motorcycle();

blue

} ;

#endif

void Display(float, float, float);
//preconditions: Colors passed in are valid red, green and

// values.
//postconditions: Vehicle is displayed on the track.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Obstacle.h

#ifndef OBSTACLE_H
#define OBSTACLE_H

class Obstacle
{

public:
Obstacle();
Obstacle(float, float);
-Obstacle();

float GetXpos() const;
//preconditions: none
//postconditions: Returns the x position of the obstacle.

float GetYpos() const;
//preconditions: none
//postconditions: Returns the y position of the obstacle,

void SetPos(float, float);
//preconditions: Values must be between -140 and 140.
//postconditions: Sets the x and y values for the obstacle.

void DisplayO;
//preconditions: none
//postconditions: The obstacle is displayed.

private:
float xpos;
float ypos;

} ;

#endif

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Rain.h

#ifndef RAIN__H
#define RAIN_H

#include "Weather.h"

class Rain : public Weather
{

public:
Rain(float);
-Rain();

void Display() const;
//preconditions: none
//postconditions: Displays the weather condition.

} ;

#endif

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Right.h

#ifndef RIGHT_H
#define RIGHT_H

class Right
{

public:
Right();
-Right();

char GetAssigned() const;
//preconditions: none
//postconditions: Returns the key assigned to Right.

// set assigned

private:
char assigned;

} ;

#endif

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Score.h

#ifndef SCORE_H
#define SCORE_H

class Score
{

public:
Score();
-Score();

int GetPointsO const;
//preconditions: none
//postconditions: Points are returned,

void CalculatePoints(int);
//preconditions: Race is ended. Time is positive,
//postconditions: Points are updated.

private:
int points;
int prev_clock;

} ;

#endif

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Section.h

#ifndef SECTION_H
ttdefine SECTION_H

class Section
{

public:
Section() ;
-Section() ;

// handling
// top speed
// set factor

// private
};

#endif

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Sky.h

#ifndef SKY_H
#define SKY_H

#include "Track.h"

#include<vector>

class Sky : public Track
{

public:
S k y ();
-Sky();

std: :vector<Obstacle> obst;

private:
Finish_line fl;

} ;

#endif

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: SNOW.h

#ifndef SNOW_H
#define SNOW_H

#include "Weather, h"

class Snow : public Weather
{

p u b l i c :
Snow(float);
-Snow();

void Display() const;
//preconditions: none
//postconditions: Displays the weather condition.

} ;

#endif

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Street.h

#ifndef STREET_H
#define STREET_H

#include "Track.h"

#include<vector>

class Street : public Track
{

public:
Street();
-Street();

std::vector<Obstacle> obst;

private:
Finish_line fl;

} ;

#endif

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Sunny.h

#ifndef SUNNY_H
#define SUNNY_H

#include "Weather .h11

class Sunny : public Weather
{

p u b l i c :
Sunny(float);
-Sunny();

void Display() const;
//preconditions: none
//postconditions: Displays the weather condition.

#endif

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Track.h

#ifndef TRACK_H
#define TRACK_H

#include"Obstacle .h"
#include"Finish_line.h"
// vehicle header file

#include<vector>

class Track
{

p ublic:
Track() ;
-Track() ;

otherwise.

otherwise.

bool IsCollision(Obstacle, Vehicle);
//preconditions: Next vehicle position has been calculated
//postconditions: Returns true if collision, false

bool IsCollision(Vehicle, Vehicle);
//preconditions: Next vehicle position has been calculated
//postconditions: Returns true if collision, false

completed

bool CheckLap(Vehicle&);
//preconditions: none
//postconditions: Returns true if the vehicle has just

a lap.

displayed.

void DisplayLaps();
//preconditions: none
//postconditions: Number of laps for the vehicle is

int GetTurnO() const;
//preconditions: none
//postconditions: Returns the position where turn is made.

int GetTurnl() const;
//preconditions: none
//postconditions: Returns the position where turn is made.

int GetTurn2 {) const;
//preconditions: none
//postconditions: Returns the position where turn is made.

int GetTurn3() const;
//preconditions: none
//postconditions: Returns the position where turn is made.

int GetObstNum() const;
106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

//preconditions: none
//postconditions: Returns the number of obstacles on the

track.

// vehicle declaration

protected:
float handling;
int turnO;
int turnl;
int turn2;
int turn3;
int obst_num

} ;

#endif

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Vehicle.h

#ifndef VEHICLE_H
#define VEHICLE_H

#include "Coord.h"
#include "Obstacle.h"
#include "Section.h"

#include "glut.h"
#include "math.h"

class Vehicle
{

public:
Vehicle() ;
Vehicle(int, int, int, int, int, int, int, int, int);
-Vehicle() ;

int GetDamageO const;
//preconditions: none
//postconditions: Returns the damage of the vehicle.

float GetHandling() const;
//preconditions: none
//postconditions: Returns the handling of the vehicle.

int GetTop_speed() const;
//preconditions: none
//postconditions: Returns the top_speed of the vehicle.

int GetDamage_tolerance() const;
//preconditions: none
//postconditions: Returns the damage_tolerance of the

vehicle.

Coord GetPos() const;
//preconditions: none
//postconditions: Returns the position of the vehicle.

int GetSpeedO const;
//preconditions: none
//postconditions: Returns the speed of the vehicle.

Coord GetNext_pos() const;
//preconditions: none
//postconditions: Returns the next position of the vehicle

int GetTurn() const;
//preconditions: none
//postconditions: Returns the turn number of the vehicle.

int GetLaps() const;
//preconditions: none

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

//postconditions: Returns the number of laps the vehicle
has

// completed.

bool GetNew_lap() const;
//preconditions: none
//postconditions: Returns true if the vehicle has just

crossed
// the finish line.

bool GetCollision() const;
//preconditions: none
//postconditions: Returns true if the vehicle is colliding.

float GetRadius() const;
//preconditions: none
//postconditions: Returns the radius of the vehicle.

void SetHandling(float);
//preconditions: none
//postconditions: Sets the handling of the vehicle.

void SetDirection(float);
//preconditions: none
//postconditions: Sets the direction of the vehicle.

void SetTurn(int);
//preconditions: none
//postconditions: Sets the turn of the vehicle.

void IncLaps();
//preconditions: none
//postconditions: Increments the number of laps the vehicle

has
// completed.

void SetNew_lap(bool);
//preconditions: none
//postconditions: Sets the value of new_lap.

void SetSpeed(int);
//preconditions: none
//postconditions: Sets the speed of the vehicle.

void SetCollision(bool);
//preconditions: none
//postconditions: Sets the value of collision.

void Accelerate();
//preconditions: none
//postconditions: Speed is increased.

void Brake();
//preconditions: none
//postconditions: Speed is decreased.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

void SteerLeft(float);
//preconditions: none
//postconditions: Direction is decreased.

void SteerRight(float);
//preconditions: none
//postconditions: Direction is decreased.

float UpdateSpeedFactor(float);
//preconditions: none
//postconditions: Updates the speed factor.

void CalculateNextPosition();
//preconditions: The vehicle is moving.
//postconditions: Returns the next position for the vehicle

to
// move.

void HitObstacle();
//preconditions: The Vehicle position is the same as the

obstacle
// position.
//postconditions: Damage is handled.

// max damage

void AssignDamage(bool) ;
//preconditions: The value passed in is true if damage is

to be
// assigned to the front
//postconditions: Damage is increased for the vehicle,

sections
// are affected,

void UpdatePosition() ;
//preconditions: next_pos has been calculated,
//postconditions: Sets pos equal to next p o s .

Section front;
Section rear;

protected:
Coord pos;
float radius;

private:
int race_time;
int damage;
int speed;
double direction;
Coord next po s ;
int top_speed;
int top_speed_min;
float handling;

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

float handling_min;
int damage_per_collision;
int damage_tolerance;
int rear_effect;
int front_effect;
int turn;
int laps;
bool new_lap;
bool collision;

void Stop();
//preconditions: none
//postconditions: Vehicle speed is set to zero.

void Spin();
//preconditions: none
//postconditions: Spinning is displayed.

void Slow();
//preconditions: none
//postconditions: Slow is displayed.

void StopReplace();
//preconditions: none
//postconditions: Vehicle is replaced on the track and the

speed
// is set to zero.

// add damage

bool IsTopSpeedMin();
//preconditions: none
//postconditions: Returns true if top_speed is at the

minimum.

bool IsHandlingMin();
//preconditions: none
//postconditions: Returns true if handling is at the

minimum.

} ;

#endif

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

z u

jxpua#

• '{

13 3UT7_x|Stut,j
: a^BATjd

?qsqo <0 7OBqsqo>J:o^3SA: :pas

.' () auioapoxsA-
() a u i o x p o x a A

:Ofxqnd
}

qoa^j, Dxxqnd : amoapoxaA ssaxD

<ao^D3A>apnxauT#

..q-qoaaj,,, apnxouT#

H_aW0HCIOT3A suxjap#
H“ 3R03a03aA japuxx#

q-auioapoxaA ; STT3 / /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

£11

g x p u a #

• {
. ' g g a u x g - q s x u x j ;

: agEAXjd

. ' g s q o < a g o E g s q o > J : o q D a A : : p q s

() xagEM-
() JtagEM

: o x g q n d

}
i j D E J C i o x g q n d : j c a g E M s s a g o

< j o g D 0 A > a p n p u i #

. . q - q D E J I , , , a p n g o u x #

l O m i A f M e u x g a p #

l O f f l i Y M g a p u g x #

q-aagEM :siTd / /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

H I

qxpua#

•{
Aqxxxqaqoxd qaox?

: paqaaqoxd

■Aqxxxqeqoxd aqq suxnqa'H :suoxqxpuoaqsod//
auou :suoxqxpuoaaxd//

.'qsuoo ()Aqxxxqeqoxaqap q^oxs

paqoaX3S aqq jo xapux aqq suinxsH :suoxqxpuoaqsod//

aqq oqux paqsnd axe pue \ pire o uaawqaq //

o q p a q p x 1 10 ! ^ 0 r i a a q a A a q s a x q x x x q a q o x d : s u o x q x p u o a a x d / /

'■ (< q e o x j > x o q a a A : : p q s) u o x q x p u o o x a q q B a M S u x u i x a q a a q u x

■uoxqxpuoa

•xoqaaA

sanxBA

() xaqqaaM-
:()xaqqaaM

: o x x q n d

}
xaqqeajyi ssaxa

< x o q a a A > a p n x a u x #

H_H3 HXY3 M auxjap#
H—HHHiYaM Xepujx#

q-xaqqeaM :sXT3 //

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

£11

saaia aa a v a H a a x v a a N a o iso a

d xiciMaaav

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

911

gxpua#

'■{
.'pauBxsse -xeqo

:a^BATJd

-aqejaxaaaY oq Aaq 12 suSxssy :suoxqxpuooqsod//
•u t passed aq qsnui Aaq peoqAaq pxx^A y : suoxqxpuoaa.xd//

: (j:eqo)paufiTssv^sS PJOA

•aqejiaxaoaY °3 pauBxsse Aaq aqq stunqay :suoxqxpuooqsod//
auou : suoxqxpuooa:id/ /

.'qsnoo () pauSxssYqsO -xeqo

■ () aqejiaxaooY-
() aqeaaqaoaY

:oxxqnd
}

aqeqaxso^Y ssexo

H_ 3XYH3a300V auxgap#
H“ aiYHaaaDOY gapugx#

q-aqeqaXsaoY ;aXT3 / /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LU

jxpua#

• {
aqq uo paAex<3sxp si axoxqaA : suoi^ipuoo^sod//

•senxBA / /
sniq

pun uaand 'pax pxxuA s j b u t passad snoxoo : suoxqxpuooa.xd//
■ (quoxj 'qpoxj 'qe o x j)Anxdsxa pxoA

() aunxdnxy-
(qux 'qux 'qux 'qux 'qux 'qux 'qux 'qux ' qux) aunx&xxy

.' () auaxduxy
: oxxqxid

}
axoxqaA oxxqnd:aunxdnxy ssnxo

..q-qqnui,, apnqoux#
„q-qnx6„ apnxoux#

„q-aXoxqaA„ apnxoux#
„q•uoxqoas„ apnxoux#

„q‘axouqsqo„ apnxoux#
uq-pnooD„ apnxoux#

H“aNVd<IHIV auxjap#
H_aNVldHIV qapuqx#

q'auaxdnxv ;aXTa //

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

811

qxpua#

■'{

•qoBuq uo paAaxdsxp sx axoxqaA :suoxqxpuooqsod//
• sanxeA / /

sniq
pus uaauS 'pajr PTX^a auB u x passsd suoxoo :suoxqxpuooaud//

.' (qaox3 'qisoxj '3HOX3)Aaxdsxa pxoA

() axoAoxa-
;(qux 'qux 'qux 'qux 'qux 'qux 'qux 'qux 'qux)axoAoxg

.' () axoAoxg
: axxqnd

}
axoxqaA oxxqnd:axoAoxg s s b x o

„ q - q q B u i „ a p n x o u x #

„ q - q n x 5 „ a p n x o u x #

„q-axoxqaA,, apnxoux#
„q-uoxqoas„ opnxoux#

,,q'exouqsqo,, apnxoux#
„q-puooo„ apnxoux#

H—sioAoja auxjap#
H_ axoAoxa japuqx#

q-aXoAaxg :aXTd //

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6X1

qxpua#

■ {
(^boxj '^eo-[3 '^poxj)A^xdsxa PTOA

() :}i?og~
;o u t '^u t 'qui 'dux 'duT 'duT 'dxtx 'dux

-' () ^ o g
:oxxqnd

}
aX^xqaA oxxqnd:^Bog ssaxD

„q-q^0ui„ apnxoux#
..q-qnxB,, aprr[Dux#

..q-eXOT^sAn eprtxaux#
„q • uoxqoas u apnxoux#

..q-sXD^qsqo,, apnxoux#
i>xx'pnooo,, apnxoux#

H ~ d u o g auxjap#
H —d u o g japujx#

q-^aog :aXTd / /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

OZl

gxpua#

• '{

. ' p a u f i j S S ' B J X e q O

: aqeAxxd

•aqexg oq Aaq e s u S t s s y : s u o p i p u o o ^ s o d / /
•u t passed aq qsnui Aaq peoqAaq px^eA v :suoxqxpuooaxd//

(xeqa)paufixssYqas PTOA

•aqexg oq pauSxsse Aaq aqq suxnqay :suoxqxpuooqsod//
auou :suoxqxpuooaxd//

.'qsuoa () paudxssYPSO xeqo

() aqexg-
i ()aqexg

: o x q q n d

}
a q e x g s s e p

H_ 3 W H a auxjap#
H~33YHa japugx#

q-aqexg :aixg //

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I l l

JTPue#

•{
•qoenq aqq uo paAeptfsxp sx apoxqaA :suoxqxpuooqsod//

■s a n p u A / /

anpq
p u e u a a u B ' p a n p x p e A a n e u x p a s s e d s n o p o o : s u o x q x p u o o a n d / /

(qeopq 'qeopq ' qeopq)Aepdspa pioA

•' () J®0~
• ' (q u x ' q u x ' q u x ' q u x ' q u x ' q u x ' q u i ' q u x ' q u i) j p o

•' () m 3
:oxpqnd

}
apoxqaA oxpqnd :ni2 0 ssepo

..q-qqeui,, apnpoux#
ii q ‘ qnpB „ apnpoux#

„q ’ apoxqaA,, apnpoux#
„q-uoxqoas„ apnpoux#

i,q ‘ apoeqsqo „ apnpoux#
..q-paooo,, apnpoux#

H~HY3 auxqap#
H—HVO japujx#

q-ueo :apTd / /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

zz \

J -rpua#

.'A qaoxj

.'x qSOXJ
: a q s A x a d

■uopisod x aqq sqas : suopipuoo^sod/ /
•Of'T pus Of'!- uaawqaq aq qsnui anxsA : suoxqxpuooaud/ /

(qaoxj) AqaS PTOA

-uoxqxsod x aqq sqas :suoxqxpuooqsod//
'Ofr! PUB O f I - uaawqaq aq qsnui anxsA :suoxqxpuooaud//

(qaox3)xqsS PT°A

•uoxqxsod x aqq suunqan :suoxqxpuooqsod//
auou :suoxqxpuooaud//

t qsuoo ()A33S qsox?

•uoxqxsod x aqq suunqay; :suoxqxpuooqsod//
auou :suoxqxpuooaud//

-'qsuoo O x q s O qsopj

i ()puooo~
(qaox3 ' qsoxJ) puooo

() puooo
:oxpqnd

}
puooo ssax°

H-craOOO auxqap#
H_aHOOO qapuqx#

q-puooo :aXTd //

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

£Z\

j x p u a #

■ '{

‘■Xj s n p - qsTUT,g
: S ^ E A T j d

!q sq o <axoeqsqo>xtoqoaA : :p q s

() 3ixa~
() qxxa

: o x x q n d
}

qtoBXi oxxq n d : q x x a s s b j o

<xoqoaA >apnxoux#

„q-5[OBJ:1L„ ap n x o u x #

H_iHia euxjap#
H_J,Hia qapujx#

q-qxxa :sXTd / /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PZl

jxpua#

■qoexx aqx uo psAe-[<3 sTp si axoxqaA : suoxqxpuooxsod/ /
•px-[i2A 3JB ux passed sxoxoo :suoxqxpuooaxd//

- (qeoxx 'qeoxx 'xnoxj)Aex^sxa PTOA

.' () Boa-
(xni 'qux 'qux 'qux ';ui 'qux 'pui ';u t 'qux)Boa

■ ()Boa
:oxxqnd

}
aXOxqaA oxxqnd:Boa ssex°

„q ■ qo'BUi,, apnxoux#
„q-^nxB„ apnxoux#

..q-aXOxqaA,, apnxoux#
„xx*uoixoas„ apnxoux#

„q-axoexsq0u apnxoux#
..q-pxooo,, apnxoux#

H Boa auxjap#
H_Soa japugx#

q ‘Boa :sXTd //

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

•qoeuq aqq uo

‘ U X p a s s e d 3 J E

•ux passed aue

9Z\

jxpua#

zq d p u a p x o o o
.'Xqdpua pjtooo

: aqBAXJtd

paAexdsxp sx auxx qsxuxd :suoxqxpuooqsod//
auou :suoxqxpuooaud//

'■ () Auxdsxa PTOA

•qas saqeuxpuooo A pue x :suoxqxpuooqsod//
saqeuxpuooo A pue x pxpnA :suoxqxpuooaud//

(puooo) gqdpuaqas PTOA

•qas saqeuxpnooo A pue x :suoxqxpuooqsod//
saqeuxpuooo A pus x pxxeA :suoxqxpuooaud//

(puooo) pqdpugqas PTOA

() auxx-qsxuxj-
() auxx~qsxux^

: oxxqnd
}

auxx qsxuxd ssexo

„ q -p u o o 3 „ ap n x o u x #

H—aNId-HSINId auxjap#
H—aNId-HSINId japujx#

q-auxx—qsxuxd :siTd //

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9ZI

■ M o p u m
asopo oq uaauos uo paAepdspp si afinssaw :suox3 XPu°oqsod//

auou :suoT^xpuooaud//
.' ()pua pxoA

•J3AO sx aouu aqq 33 snuq suunqay; : suox3XPu°oqsod//
auou :suopqxpuooaud//

qsuoo (apopqaA) uaAoeoBHSi pooq

• u o p q o n u a q u x s u u n q a n : s u o x 3 XPu ° o q s o d / /
a u o u : s u o x q x p u o o a u d / /

x s u o o () u o x q o n u a q u i q a p 3120x3:

•uopqoauaqux suunqau pue saqapnopno :suox3XPu°oqsod//
suoqoaq uopqoauaqux //

qonuq ‘ s a uaqqaaM supuquoo uoqoaA suoqonq :suopqxpuooaud//
() uoxqoBuaquiaq-epnopao qaopq

■paads pun //
apopqaA.

uaaMqaq uopqoeuaqux - 1 0 3 0:0 3 0 1 2 3: suunqan :suopqxpuooqsod//
auou : suopqxpuooaud/ /

.'qsuoo ()uopqonuaqup-paads- apopqaAqoo qnopq

•aoao: up sapopqaA 3 0 uaqumu suunqay :suopqxpuooqsod//
auou : suopqxpnooaud//

•' 3SU00 () 3 3 BJ- ux— apopqaAqoO qnp

■aoBi uad sdnp suunqay :suox3 XPu°oqsod//
auou :suox3 XPuooaud//

i 3 su o d ()aouu-uad- sdnqqap qux

•apqpq suunqan ■-suoxqxpuooqsod//
auou :suopqppuooaud//

.'qsuoo ()ax3Xi3O0 *ui2qo

. '()arneo-
.' (qeox3 'qux 'qux 'qnopq 'qnopq '3 1 2 0 3 3

'qnopq 'qnopq '3 1 2 0 3 3 'qnopx 'qux 'qux ' *;ceqo) aureo
.' () 3111123

: oppqnd
}

aureo ssspo

„q •Auuns„ apnxoux#
..q-puaoqAa^,, apnxoux#
„q-uaqqaaM„ apnxoux#

„q•aioog„ apnpoux#
„q’qaauqs„ apnpoux#

H-3KVS auxqop#
H-aWVO 3SPU 3T#

q-aures lappa //

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Street track;
Score scr;
Keyboard kb;

private:
char* title;
int laps_per_race;
int vehicles_in_race;
float track_sunny_interaction;
float track_rain_interaction;
float track_snow_interaction;
float track_hail_interaction;
float track_clouds_interaction;
float vehicle_obstacle_interaction;
float vehicle_track_interaction;
int front_obstacle_interaction;
int rear_obstacle_interaction;
float vehicle_speed_interaction;
int wthr_sel;
float interaction;
std::vector<float> factors;

} ;

#endif

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Grand_Prix.h

#ifndef GRAND_PRIX_H
#define GRAND_PRIX_H

#include "Track.h"

#include<vector>

class Grand_Prix : public Track
{

public:
Grand_Prix() ;
~Grand_Prix();

std::vector<Obstacle> obst;

private:
Finish_line fl;

};

#endif

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: HighHighScoreListList.h

#ifndef HighScoreList_H
ttdefine HighScoreList_H

#include<vector>
#include<string>
#include "ListEntry.h"

using namespace std;

class HighScoreList
{

public:
HighScoreList() ;
-HighScoreList() ;

void AddListEntry(int);
//preconditions: Value must be a positive number,
//postconditions: A list entry is added to the list

void Display();
//preconditions: none
//postconditions: High score list is displayed,

void L o a d ();
//preconditions: High score list file exists,
//postconditions: High scores are loaded.

Void Store();
//preconditions: none
//postconditions: High scores are saved.

void Sort();
//preconditions: none
//postconditions: High scores are sorted.

int GetLowScore() const;
//preconditions: none
//postconditions: Low score on the list is returned

private:
std::vector<ListEntry> scores;

} ;

#endif

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Horse.h

#ifndef Horse_H
#define Horse_H

#include "Coord.h11
#include "Obstacle.h"
tinclude "Section.h"
ttinclude "Vehicle.h"

ttinclude "glut.h"
#include "math.h"

class Horse:public Vehicle
{

public:
Horse();
Horse(int, int, int, int, int, int, int, int, int);
-Horse();

blue

} ;

#endif

void Display(float, float, float);
//preconditions: Colors passed in are valid red, green and

// values.
//postconditions: Vehicle is displayed on the track.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Keyboard.h

#ifndef KEYBOARD_H
#define KEYBOARD_H

include"Le f t .h "
#include"Right.h"
#include "Accelerate.h"
include"Brake.h "

class Keyboard
{

public:
Keyboard();
-Keyboard();

void ConfigureKeys();
//preconditions: none
//postconditions: Keys are assigned to Left, Right,

Accelerate,
// and Brake.

bool IsCurrentControl() const;
//preconditions: none
//postconditions: Returns true is keyboard is the current
// control.

void ToggleCurrentControl();
//preconditions: none
//postconditions: Changes controls from keyboard to mouse

or vice
// versa.

Left left_key;
Right right_key;
Accelerate accelerate_key;
Brake brake_key;

private:
bool current_control;

} ;

#endif

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Left.h

#ifndef LEFT_H
#define LEFT_H

class Left
{

public:
Left();
-Left()

char GetAssigned() const;
//preconditions: none
//postconditions: Returns the key assigned to Left,

void SetAssigned(char);
//preconditions: A valid keyboad key must be passed in.
//postconditions: Assigns a key to Accelerate.

private:
char assigned;

} ;

#endif

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: ListEntry.h

#ifndef LISTENTRY_H
#define LISTENTRY_H

#include<string>

using namespace std;

class ListEntry
{

pu b l i c :
ListEntry();
-ListEntry();

int GetPoints() const;
//preconditions: none
//postconditions: Return points.

string Getlnitials() const;
//preconditions: none
//postconditions: Return initials.

void SetPoints(int);
//preconditions: Value must be positive,
//postconditions: Points are set.

void Setlnitials(string);
//preconditions: No more than three characters may be

passed in.
//postconditions: Initials are set.

private:
int points;
string initials;

} ;

#endif

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Motorcycle.h

#ifndef Motorcycle_H
#define Motorcycle_H

#include "Coord.h"
#include "Obstacle.h"
#include "Section.h"
#include "Vehicle.h"

#include "glut.h"
#include "math.h"

class Motorcycle:public Vehicle
{

public:
Motorcycle();
Motorcycle(int, int, int, int, int, int, int, int, int);
-Motorcycle();

blue

} ;

#endif

void Display(float, float, float);
//preconditions: Colors passed in are valid red, green and

// values.
//postconditions: Vehicle is displayed on the track.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Obstacle.h

#ifndef OBSTACLE_H
#define OBSTACLE_H

class Obstacle
{

public:
Obstacle() ;
Obstacle(float, float) ,-
-Obstacle();

float GetXposO const;
//preconditions: none
//postconditions: Returns the x position of the obstacle.

float GetYpos() const;
//preconditions: none
//postconditions: Returns the y position of the obstacle,

void SetPos(float, float) ,-
//preconditions: Values must be between -140 and 140.
//postconditions: Sets the x and y values for the obstacle.

void Display();
//preconditions: none
//postconditions: The obstacle is displayed.

private:
float xpos;
float ypos;

} ;

#endif

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Rain.h

ttifndef RAIN_H
#define RAIN_H

#include "Weather.h"

class Rain : public Weather
{

public:
Rain(float);
-Rain();

void Display() const;
//preconditions: none
//postconditions: Displays the weather condition.

};

#endif

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Right.h

#ifndef RIGHT_H
#define RIGHT_H

class Right
{

public:
Right();
-Right();

char GetAssigned() const;
//preconditions: none
//postconditions: Returns the key assigned to Right,

void SetAssigned(char);
//preconditions: A valid keyboad key must be passed in.
//postconditions: Assigns a key to Right.

private:
char assigned;

} ;

#endif

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Score.h

iifndef SCORE_H
#define SCORE_H

class Score
{

public:
Score();
-Score();

int GetPointsO const;
//preconditions: none
//postconditions: Points are returned,

void CalculatePoints(int);
//preconditions: Race is ended. Time is positive,
//postconditions: Points are updated.

private:
int points;
int prev_clock;

} ;

#endif

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Section.h

#ifndef SECTION_H
#define SECTION_H

class Section
{

public:
Section();
-Section();

void ReduceHandling(float &);
//preconditions: Value must be between 0 and 1.
//postconditions: Handling is reduced.

void ReduceTopSpeed(int &);
//preconditions: Value must be between 1 and 999.
//postconditions: Top Speed is reduced.

void SetFactor(int);
//preconditions: Value must be between 0 and 9
//postconditions: Factor is set.

private:
int factor;

};

#endif

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Sky.h

#ifndef SKY_H
#define SKY_H

#include "Track.h"

#include<vector>

class Sky : public Track
{

public:
Sky();
-Sky();

std::vector<Obstacle> obst;

private:
Finish_line fl;

} ;

#endif

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: SNOW.h

#ifndef SNOW_H
tdefine SNOW_H

#include "Weather.h"

class Snow : public Weather
{

public:
Snow(float);
-Snow();

void Display() const;
//preconditions: none
//postconditions: Displays the weather condition.

} ;

#endif

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Street.h

#ifndef STREET_H
#define STREET_H

#include "Track.h"

#include<vector>

class Street : public Track
{

public:
Street();
-Street();

std::vector<Obstacle> obst;

private:
Finish_line fl;

} ;

#endif

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Sunny.h

#ifndef SUNNY_H
#define SUNNY_H

#include "Weather.h"

class Sunny : public Weather
{

public:
Sunny(float);
-Sunny();

void Display() const;
//preconditions: none
//postconditions: Displays the weather condition.

#endif

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Track.h

#ifndef TRACK_H
#define TRACK_H

#include "Obstacle.h"
#include" Finish_line. h"
#include "Bicycle.h"

#include<vector>

class Track
{

pu b l i c :
Track() ;
-Track() ;

otherwise.

otherwise.

bool IsCollision(Obstacle, Vehicle);
//preconditions: Next vehicle position has been calculated
//postconditions: Returns true if collision, false

bool IsCollision(Vehicle, Vehicle);
//preconditions: Next vehicle position has been calculated
//postconditions: Returns true if collision, false

completed

bool CheckLap (VehicleSc) ;
//preconditions: none
//postconditions: Returns true if the vehicle has just

/ / a lap.

displayed.

void DisplayLaps();
//preconditions: none
//postconditions: Number of laps for the vehicle is

int GetTurnO() const;
//preconditions: none
//postconditions: Returns the position where turn is made.

int GetTurnl() const;
//preconditions: none
//postconditions: Returns the position where turn is made.

int GetTurn2() const;
//preconditions: none
//postconditions: Returns the position where turn is made.

int GetTurn3() const;
//preconditions: none
//postconditions: Returns the position where turn is made.

int GetObstNumO const;
144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

track.

//preconditions: none
//postconditions: Returns the number of obstacles on the

st d ::vector<Bicycle> comp;

protected:
float handling;
int turnO;
int turnl;
int turn2 ;
int turn3;
int obst_num;

} ;

#endif

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Vehicle.h

#ifndef VEHICLE_H
#define VEHICLE_H

#include "Coord.h"
#include "Obstacle.h"
#include "Section.h"

#include "glut.h"
#include "math.h"

class Vehicle
{

public:
Vehicle();
Vehicle(int, int, int, int, int, int, int, int, int);
-Vehicle();

int GetDamage() const;
//preconditions: none
//postconditions: Returns the damage of the vehicle.

float GetHandling() const;
//preconditions: none
//postconditions: Returns the handling of the vehicle.

int GetTop_speed() const;
//preconditions: none
//postconditions: Returns the top_speed of the vehicle.

int GetDamage_tolerance() const;
//preconditions: none
//postconditions: Returns the damage_tolerance of the

vehicle.

Coord GetPosO const;
//preconditions: none
//postconditions: Returns the position of the vehicle.

int GetSpeedO const;
//preconditions: none
//postconditions: Returns the speed of the vehicle.

Coord GetNext_pos() const;
//preconditions: none

//postconditions: R.etU2rns tlie next position of tfie vetiicle

int GetTurn() const;
//preconditions: none
//postconditions: Returns the turn number of the vehicle.

int GetLaps() const;
//preconditions: none

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

//postconditions: Returns the number of laps the vehicle
has

// completed.

bool GetNew_lap() const;
//preconditions: none
//postconditions: Returns true if the vehicle has just

crossed
// the finish line.

bool GetCollision() const;
//preconditions: none
//postconditions: Returns true if the vehicle is colliding.

float GetRadius() const;
//preconditions: none
//postconditions: Returns the radius of the vehicle.

void SetHandling(float);
//preconditions: none
//postconditions: Sets the handling of the vehicle.

void SetDirection(float);
//preconditions: none
//postconditions: Sets the direction of the vehicle.

void SetTurn(int);
//preconditions: none
//postconditions: Sets the turn of the vehicle.

void IncLaps();
//preconditions: none
//postconditions: Increments the number of laps the vehicle

has
// completed.

void SetNew_lap(bool);
//preconditions: none
//postconditions: Sets the value of new_lap.

void SetSpeed(int);
//preconditions: none
//postconditions: Sets the speed of the vehicle.

void SetCollision(bool);
//preconditions: none
//postconditions: Sets the value of collision.

void Accelerate();
//preconditions: none
//postconditions: Speed is increased.

void Brake();
//preconditions: none
//postconditions: Speed is decreased.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

void SteerLeft(float);
//preconditions: none
//postconditions: Direction is decreased.

void SteerRight(float);
//preconditions: none
//postconditions: Direction is decreased.

float UpdateSpeedFactor(float);
//preconditions: none
//postconditions: Updates the speed factor.

void CalculateNextPosition();
//preconditions: The vehicle is moving.
//postconditions: Returns the next position for the vehicle

to
/ / move.

void HitObstacle();
//preconditions: The Vehicle position is the same as the

obstacle
// position.
//postconditions: Damage is handled.

bool IsMaxDamage();
//preconditions: none
//postconditions: Returns true if damage equals or exceeds
// tolerance, false otherwise.

void AssignDamage(bool);
//preconditions: The value passed in is true if damage is

to be
// assigned to the front
//postconditions: Damage is increased for the vehicle,

sections
// are affected,

void UpdatePosition();
//preconditions: next_pos has been calculated,
//postconditions: Sets pos equal to next_pos.

Section front;
Section rear;

protected:
Coord pos;
float radius;

private:
int race_time;
int damage;
int speed;
double direction;
Coord next p o s ;

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

int top_speed;
int top_speed_min;
float handling;
float handling_min;
int damage_per_collision;
int damage_tolerance;
int rear_effect;
int front_effeet;
int turn;
int laps;
bool new_lap;
bool collision;

void Stop();
//preconditions: none
//postconditions: Vehicle speed is set to zero.

void Spin();
//preconditions: none
//postconditions: Spinning is displayed.

void SlowO;
//preconditions: none
//postconditions: Slow is displayed.

void StopReplace();
//preconditions: none
//postconditions: Vehicle is replaced on the track and the

speed
// is set to zero.

void AddDamage();
//preconditions: none
//postconditions: Increases the damage of the vehicle.

bool IsTopSpeedMin();
//preconditions: none
//postconditions: Returns true if top_speed is at the

minimum.

bool IsHandlingMin();
//preconditions: none
//postconditions: Returns true if handling is at the

minimum.

};

TT t l i t l - L -L

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Water.h

#ifndef WATER_H
#define WATER_H

#include "Track.h"

#include<vector>

class Water : public Track
{

public:
W a ter();
-Water();

std::vector<Obstacle> obst;

private:
Finish_line fl;

} ;

#endif

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// File: Weather.h

#ifndef WEATHER_H
#define WEATHER_H

#include <vector>

class Weather
{

p u b l i c :
Weather();
-Weather() ;

int DetermineWeatherCondition(std::vector<float>) ;
//preconditions: probabilities have been calculated to

values
// between 0 and 1 and are pushed into the

v e c t o r .
//postconditions: Returns the index of the selected

condition.

float GetProbability() const;
//preconditions: none
//postconditions: Returns the probability.

protected:
float probability;

} ;

#endif

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX D

TOOLS USED

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The following tools were used in the development of the software:

Microsoft Visual Basic ® - GUI

Microsoft Visual C++ ® - generated code

OpenGL library ® - graphics in the generated code

Microsoft Visio ® - Use Case Diagrams and Class Diagrams

Microsoft Word ® - All text and tables

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX E

GLOSSARY

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 m u Dollnilion
Developer A person who is designing the RaceGen software.

User A person who uses RaceGen to generate code for a racing game.

Player A person who plays the game which the user generated with RaceGen.

GUI Graphical User Interface. It is used for the user to interact with the
computer and make selections that will be used by the computer.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX F

USER’S MANUAL

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The RaceGen racing game program generator provides a means for the user to

generate code for a racing game by entering selections from a questionnaire. The code is

generated based on these selections without any programming done by the user. The

questionnaire forms provide the user with a variety of choices for game generation. The

forms are easy for the user to complete. They allow for easy navigation and are user-

friendly.

The user is able to enable or disable the high scores list, according to the following

GUI. The player will be able to enter initials to be displayed with the score. The high

scores will be stored in a file and be listed in order at the end of a race. The following is

where the user enters the title of the game. This title will appear as the title of the

window while the game is being played. The following GUI is used to assign the number

of laps per race. The allowable range is 1-99. The following GUI allows the user to

select how many vehicles will be in the race, in addition to the player’s vehicle. The user

may enter from 0-5 additional vehicles. Pressing the “Submit” button accepts the

selections and continues to the next page. Pressing the “Cancel” button rejects the

selections and exits RaceGen.

Game T itle------ — - - Other V ehicles-

Enter title jG rind Pn< Pro
number

- L a p ; per R ace - -

i Enter number of
lap ' per race f T 1-99

High Scores

& enable

C~ disable

Submit Cancel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The following Graphical User Interface (GUI) is used to select the vehicles, tracks,

weather, and controls. Select the controls which are to be made available to the user by

marking the checkboxes to the left of the control name. Use the radio buttons to the right

to select the default control. If more than one control type is selected from the GUI, then

the player will have the option of changing the controller.

For weather: the numbers entered are used to determine the probability that the

weather condition will come up for a race. The weather conditions will be selected

before each race, based on these probabilities. Only one weather condition will be

applied to each race. The selected weather condition will be applied for the entire race.

A higher number represents a more probable weather condition. If only one entry is non

zero, then that weather condition will be applied to each race. There must be at least one

non-zero entry. Pressing the “Submit” button will accept the selections and continue to

the next page. Pressing the “Cancel” button will reject the selections and return to the

previous page.

V ehic le T rack™ --K ey b o a rd - W e a th e r - ---------

 ̂ Eunny p i 0 9 '

B oat
Car
H orse

Dirt
Sky
W a te r
V elodrom e

j left [7

| right jd "
rain j"o

snow f o

hail f u

c louds p]

M otorcycle
Bicycle
D og

j brake p

a c c e le ra te [7

Controls ‘default Configurable

C fixed1 7 k e y b o a 'd <*

J 7 m o u se C~ (• c o n f ig u ra te Submit C an ce l

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The following menu is used by the player to start a race, assign keys for keyboard

control if it is available and configurable is selected, and change controls i f both are

available:

1) Start race

2) Configure keyboard

3) Change controls

These are the prompts for the user to configure the keyboard controls:

Enter Left:

Enter Right:

Enter Accelerate:

Enter Brake:

Once entries are made for each prompt, the keyboard keys will be assigned.

When the user opts to change controls, mouse controls will be used if keyboard was

previously selected, and vice versa.

The following GUI is used for the user to set the top speed of the vehicles for the

selected vehicle type. The allowable range is 1-999. It is used by the user to enable or

disable vehicle damage. It is used for the user to select either handling or top speed to be

affected if damage is assigned to the rear or front of the vehicle. The user uses it to select

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the affect of a collision and to assign the damage tolerance for each vehicle. The

allowable range is 1-999.

When a vehicle is created, it will be initialized with zero damage. Each time it is

involved in a collision, if damage is enabled, an amount of damage will be added to the

vehicle’s total damage, according to the following GUI. The amount entered is how

much damage is done to the vehicle. The allowable range is 1-99.

I im iJM ffF

' o p Speed

Airplane jjRMU 1 999

\e h i r l a Tolerance

Airplane]4l lO 1 999

- D am age per Culli'iory-Sr

Airplane j~ 5 1 99

D am age Effect* Location

h and ing

(7 top

r--i.nl X.l

D am age — ;Hi*r Interaction Table -

■ ' I enab le 3 8 8 1 1 1 *peed

1 r di able 1 j Airplane Q ■ 9
1 front end

i rear end BRIM
p H |

Sunny

ilfilSlll:
p l | Interaction values are 0

tu 9 0 will c a u 'e the
least am ount i it effect
on the interaction and 3

f- ' lo p and replace
i e l nice on flack

ohOW jrT
will c a u .e the m o 't
effect on the
interaction

' f i d -

Clouds

f t

vk ' :>
B&B a B B a i

G enerate C ancel

The user uses the GUI table to set the effect of interaction between different settings

of the parameters.

Vehicle / track, track / weather, vehicle / speed:

The numbers represent the effect on vehicle handling. A higher number will

make steering more difficult. The vehicle will tend to slide to the outside o f turns.

Vehicle / obstacles:

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

If the spin or slow options are selected, then this is the amount of spin or

slow.

The above settings will affect the performance and handling of the vehicles. A

probability will be determined, based on the user defined settings, which will be used to

update the vehicle positions. When the vehicle positions are updated, a check will be

done to determine if each vehicle has encountered an obstacle. Once the damage to the

car has been assigned, a check will be made to determine if the car has reached its

maximum damage tolerance. When the vehicle positions are updated, a check will be

done to determine if each vehicle has crossed the finish line. Pressing the “Generate”

button will accept the selections and generate the code. Pressing the “Cancel” button will

reject the selections and return to the previous page. Obstacles will be placed alongside

the track at various locations so that a vehicle which stays on the track will not collide

with one and a vehicle which strays off the course must try to avoid them. Whenever a

vehicle is damaged and effects of damage on performance are selected, either the

handling or top speed will be reduced, based on the location of the damage on the vehicle

and the user’s selection of what is affected by damage to that section. Each vehicle will

have a front section and a rear section. When the vehicle is damaged, i f top speed is

assigned to that section by the user, the top speed will be reduced. If handling is assigned

to the damaged section, then the vehicle will be more difficult to steer.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REFERENCES

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REFERENCES

[1] Farlex. “parameter-driven”
http://computing-dictionarv.thefireedictionarv.com/parameter-driven (20051.

[2] Myers, Bill. “Info Boss Automatic Program Generator”
http://www.winsite.com/bin/Info750Q000015244 (1998).

[3] Sommerville, Ian 2001. Software Engineering. New York, Addison—Wesley.

[4] Voelter, Markus. “A Catalog of Patterns for Program Generation”
http://www.voelter.de/data/pub/ProgramGeneration.pdf (2003).

[5] Miller, Randy. “Borland Developer Network”
http://bdn.borland.eom/article/Q. 1410.31863.OO.html (2005).

[6] Williams, Bob. “National Sports Center Velodrome”
http://www.nscsports.com/velo/ (2005).

[7] Deitel and Deitel, H.M. and P.J. 2000. C++ How to Program. New Jersey, Prentice
Hall.

[8] Longman, Addison Wesley. “Preconditions and Postconditions”
http://www.cs.ucf.edu/~reinhard/classes/cop3503/notes01.pdf (1997).

[9] Magestro, Dan. “C++ Programming Guidelines”
http ://www. star.bnl. go v/ST AR/comp/train/ standards .htm1 (2004).

[10] Hoff, Todd. “Standardization is Important”
http://www.possibilitv.eom/Cpp/CppCodingStandard.html#important (2005).

[11] Scacchi, Walt 2001. “Process Models in Software Engineering.” New York — John
Wiley

and Sons, Inc.

[12] Tech Target, “spiral model”
http://searchvb.techtarget.com/sDefinition/0..sid8 gci755347.00.html (2006).

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://computing-dictionarv.thefireedictionarv.com/parameter-driven
http://www.winsite.com/bin/Info750Q000015244
http://www.voelter.de/data/pub/ProgramGeneration.pdf
http://bdn.borland.eom/article/Q
http://www.nscsports.com/velo/
http://www.cs.ucf.edu/~reinhard/classes/cop3503/notes01.pdf
http://www.possibilitv.eom/Cpp/CppCodingStandard.html%23important
http://searchvb.techtarget.com/sDefinition/0..sid8

